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Abstract
This work introduces an accurate finite element approach employing a new stabilized discrete weak
gradient, designed for second-order elliptic problems on arbitrary conforming meshes. We formulate
the approach within a discontinuous Galerkin framework and derive a consistent and coercive bilinear
form. Appropriate error analysis on a model problem confirms optimal convergence. Building on
the core analysis, we extend the method to more challenging settings, including time-dependent
heterogeneous scenarios and a biophysically realistic optimal-control model of photobleaching in the
budding yeast cell. We further illustrate the versatility of the weak-gradient construction by applying it
to an unsteady level-set equation relevant to multiphase flow modeling. The implementation supports
high-order polynomial spaces, varied boundary conditions, and parallel execution with both direct
and iterative linear solvers. Computational results corroborate the theoretical analysis and exhibit
optimal convergence.

Keywords: Finite element method; discontinuous Galerkin; weak gradient; numerical analysis; error
estimates

AMS 2020 Classification: 65Mxx; 65N15; 65N30; 35B45

1 Introduction

Designing reliable numerical schemes for partial differential equations remains a very active field
of research. Discontinuous Galerkin (DG) methods have achieved notable success across diverse
disciplines, offering effective solutions for a wide range of physical problems and applications.
Extensive studies have examined the mathematical foundations and numerical properties of DG
methods. In what follows, we highlight key contributions and provide a bridge to weak Galerkin
(WG) methods. Refer, for example, to [1], which provides a pedagogical introduction to DG
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for elliptic and parabolic equations, and the references cited therein. Moreover, [2] develops
the mathematical foundations and analysis of DG across representative model problems, [3]
surveys recent developments and applications, and [4] presents a Hybridizable Discontinuous
Galerkin (HDG) variant incorporating integral boundary conditions. HDG introduces facet (trace)
unknowns and enables local static condensation for efficiency. A defining feature of DG methods
is their weak enforcement of continuity via stabilization mechanisms, rather than direct imposition
through the function space [2]. In particular, "over-penalized" interior penalty variants use a
penalty parameter larger than the standard scaling; this can strengthen stability constants and
enables superconvergent gradient recovery [5]. The use of discontinuous piecewise polynomial
approximations makes them well-suited for solving problems on general finite element meshes.
This perspective-stability via weak enforcement and element-local polynomial flexibility-naturally
motivates formulations where differential operators themselves are treated in a weak sense, as in
WG methods.

Among its many applications, we refer to developments on biharmonic problems [6], level-set
problems [7], elasticity and hyperelasticity [8], the Allen-Cahn equation [9], and mixed weak
Galerkin formulations for elliptic problems [10]. For illustration: [6] develops a symmetric interior-
penalty DG scheme for the biharmonic problem on meshes with general polygonal (2D) and
polyhedral (3D) elements; by "polygonal/polyhedral meshes" we mean general polytopal elements
(polygons in 2D, polyhedra in 3D) beyond standard triangles/quadrilaterals. [7] proposes a DG
level-set approach for multi-phase modeling; [8] introduces a penalty-free DG formulation for
linear elasticity; and [9] analyzes adaptive DG schemes for the Allen-Cahn equation on polygonal
meshes. Additionally, DG methods have been used in computational fluid dynamics and complex
flows. Indeed, [11] develops an embedded DG formulation for CFD, using a continuous interior
trace space to reduce the globally coupled unknowns. [12] develops a DG strategy for the
coupled unsteady Stokes/Cahn-Hilliard system, demonstrating optimal convergence on two-
phase benchmarks. In addition, [13] proposes an HDG approach for compressible flows. In
[14], DG is extended to dynamic linear solid viscoelasticity. For complex flows, [15] provides a
focused review of numerical methods for yield-stress (viscoplastic) fluids and discusses algorithms
tailored to nonsmooth constitutive behavior. In [16], a DG method is developed for dynamic
viscoelasticity using a Crank-Nicolson time integrator. Further applications extend to complex
physical phenomena such as earthquake-generated waves [17], simulations of reservoirs [18], and
fluid transport in fissure-rich porous matrices [19]. See also general overviews and comparisons
for convection-dominated problems [20, 21].

In recent years, weak Galerkin (WG) techniques have undergone significant advancements and
have been effectively employed across diverse problem classes [22, 23]. WG introduces weak
differential operators acting on discontinuous functions and typically includes a stabilizer to
weakly enforce continuity across element interfaces, making the approach naturally compatible
with general polytopal meshes. Foundational works introduce the discrete weak gradient for
elliptic problems and establish optimal error estimates on arbitrary polytopal meshes [10, 22]. Since
then, this approach has gained considerable recognition for its effectiveness in handling diverse
applications. It has been widely employed in various fields, including elasticity problems [24, 25],
solid mechanics [26, 27], and eigenvalue problems [28]. Additionally, it has been applied to
solve the biharmonic equations [29, 30], multiphysics and flow modeling - such as Stokes, Darcy,
and Brinkman equations [31] - as well as stochastic equations [32], Maxwell equations [33],
elliptic [34] and hyperbolic interface problems [35], among others. In summary, the WG viewpoint
complements DG: both accept discontinuities at the discrete level, but WG builds weak derivatives
into the operator itself, which is central to our approach.

2
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In classical DG, stability is typically enforced by explicit penalty terms added to the discrete
bilinear form to control jumps across interfaces [2]. In the present work, our formulation embeds a
single interface stabilizer directly into the definition of the weak gradient operator. This placement
preserves consistency and yields the discrete coercivity and boundedness required for the analysis,
with a stabilization parameter that can be kept very small-specifically, scaled with the square
root of the local element size (see Lemma 3). Existing DG and WG formulations typically realize
stabilization at the level of the discrete bilinear form through penalty. Embedding stabilization
directly in the weak gradient (at the operator level) is less explored. We formalize this idea,
prove discrete coercivity and boundedness, establish convergence, and demonstrate numerical
robustness on steady and unsteady model problems. This operator-level stabilization links the
DG and WG frameworks discussed above to the present method. The literature on polytopal
meshes further includes notable contributions for second-order elliptic equations, such as the
interior penalty approach [36] and the conforming DG [37]. These results motivate designs that
remain accurate and stable on polytopal partitions, a setting handled naturally by weak-operator
formulations.
Accordingly, this paper introduces a discontinuous Galerkin approach built upon a weak for-
mulation of the gradient operator. Concretely, we define a stabilized discrete weak gradient by
adding a single interface term at the operator level (Definition 1). This construction ensures a
well-posed discrete formulation. We perform rigorous error estimation and convergence analysis,
demonstrating optimal convergence on arbitrary quasi-uniform meshes.
The approach is readily extended to time-dependent problems with heterogeneous diffusion.
These arise widely, e.g., in engineering mathematics when modeling temperature-dependent
diffusivity [38]. Furthermore, we present a framework to efficiently solve heterogeneous diffusion
in the endoplasmic reticulum of a budding yeast cell, within an optimal control setting. This
biologically relevant test case illustrates how the present method adapts to realistic geometries
and spatially varying coefficients. For multiphase-flow modeling, we apply the weak gradient
formulation to steady advection-reaction problems and unsteady level-set equations. Appropriate
modifications to the discrete bilinear forms are introduced, and we only report preliminary nu-
merical results. Finally, we assess the proposed method through numerical experiments in one,
two, and three-dimensional settings with high-order polynomial approximations. The numerical
evidence shows accurate solutions and convergence at optimal rates.
The article begins with preliminaries. Section 2 describes the discontinuous WG approach along
with its main features. Convergence analysis follows in Section 3. Section 4 outlines the model
problems and applications. Numerical experiments are presented in Section 5. Section 6 and Sec-
tion 7 provide concluding remarks and prospective extensions.

Terminology and notations

Consider a convex polytopal domain Ω ⊂ Rd with d ⩾ 1. Let Mh be a matching, shape-regular,
and contact-regular mesh of Ω [39]. The mesh faces Eh are partitioned into interior interfaces
E i

h (edges (2D) or planar faces (3D)) and boundary faces E b
h (faces lying on ∂Ω). Each face F is

assigned a fixed orientation for its unit normal nF: outward from T1 if F = ∂T1 ∩ ∂T2, and outward
from Ω if F ∈ E b

h . For T ∈ Mh, denote by nT its outward unit normal and by FT its set of faces.
However, TF represents the elements sharing the face F ∈ Eh. The quantity N∂T := max card(FT)

on Mh denotes the largest number of faces by element. Local mesh sizes are defined as hT for an
element T, and hF ⩽ hT for a face F. These sizes are assumed to vary smoothly across neighboring
elements, whereas h := max hT over Mh denotes the overall mesh size.
For a regular function ψ : Ω → R, consider an interior face F = ∂T1 ∩ ∂T2 ∈ E i

h . Define the average

3
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as {{ψ}} = (ψ|T1 + ψ|T2)/2 and the jump as JψK = ψ|T1 − ψ|T2 across F. For boundary faces F ∈ E b
h ,

the definitions simplify to {{ψ}} = ψ|T1 and JψK = ψ|T1 , where T1 is the element sharing F. These
trace operators extend component-wise for vector-valued functions. For F ∈ E i

h, observe that the
term {{ψ}}− ψ is proportional to the jump JψK, with a proportionality coefficient of ±1/2.
Denote by Pk

d(Mh) the broken k-order polynomials on Mh, belonging to a family of broken
piecewise Hilbert spaces Hs(Mh), with Pk

d(Mh) ⊂ H1(Mh) and

Pk
d(Mh) =

{
ξ ∈ L2(Ω) s.t. ξ|T ∈ Pk

d(T), ∀T ∈ Mh

}
.

Given a subdomain K ⊂ Ω, we use (·, ·)K for the standard inner products in L2(K) and [L2(K)]d.
Norms and semi-norms in Hs(K) are denoted by ∥ · ∥s,K and | · |s,K, respectively; By convention,
H0(K) is identified with L2(K). Given a set S of elements or faces, the inner product (·, ·)S sums
(·, ·)K over S .
On individual mesh elements or faces K, we introduce the piecewise L2-orthogonal projector
πk

h : L2(K) → Pk
d(K). For boundary faces, this projector is denoted by πk

h,b. The vectorial
L2-projector onto [Pk

d(K)]
d, denoted by πk

h, acts component-wise on vector fields. On regular
polytopal meshes, these projectors exhibit optimal approximation properties in Pk

d(K) [40].

Governing equations

The Poisson-Dirichlet problem seeks u : Ω → R such that

−∆u = f in Ω, (1)

with f ∈ L2(Ω) and u = g ∈ L2(∂Ω) on ∂Ω. Well-posedness holds true. The variational
formulation involves a coercive bilinear form, with u ∈ W = H1(Ω) satisfying the prescribed
boundary condition.
The finite-dimensional discrete space is defined as Wh = Pk

d(Mh), with k ⩾ 1. Furthermore,
we assume the regularity u ∈ W⋆ := W ∩ H2(Th), which ensures that both u and ∇u · n are
square-integrable on Eh. This allows u to be used in the discrete weak formulation. The potential
u and its normal diffusive flux satisfy the jump conditions:

JuK = 0, ∀F ∈ E i
h, (2a)

J∇uK · nF = 0, ∀F ∈ E i
h. (2b)

Set W⋆h := W⋆ + Wh. The bilinear form is considered on W⋆h × W⋆h. Unless stated otherwise, all
constants are mesh- and h-independent. The notation x ≲ y stands for x ≤ C y for a generic C > 0.
Indexed constants remain fixed throughout.
With this notation in place, the next two sections (Section 2 and Section 3) proceed as follows. We
define a discrete weak gradient with a single built-in stabilizer (Definition 1). We establish two
basic properties: agreement with the projected classical gradient for regular functions (Lemma 1)
and links to the standard gradient locally and globally (Lemma 2). Equipped with this gradient,
we construct a consistent discrete form via an interface correction and state the discrete problem.
We then define an energy-like norm and prove its equivalence with a mesh-dependent norm
(Lemma 3). We also establish discrete coercivity and boundedness (Lemma 4 and Lemma 5).
Finally, we conclude with optimal a priori error bounds in suitable norms (Theorem 1 and
Theorem 2). Subsequent sections present model problems of increasing complexity and the
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corresponding numerical experiments.

2 Weak Galerkin finite element approach

Let ψ be piecewise smooth. The discrete weak gradient ∇ωψ ∈ [Pκ
d(Mh)]

d is defined element-wise
on each T ∈ Mh, including an interface stabilization controlled by a fixed parameter η.

Definition 1. Given ψ ∈ H1(Mh), we define ∇ωψ ∈ [Pκ
d(Mh)]

d satisfying

∫
T
∇ωψ · ξh = −

∫
T

ψ∇ · ξh +

∫
∂T

(
{{ψ}}+

η

h1/2
T

(
{{ψ}}− ψ

))
ξh · n, ∀ξh ∈ [Pκ

d(Mh)]
d.

The parameter η is mesh-independent and it is sufficient to set it small, as will be stated afterwards.
A value η = 1 is set in practice. The degree κ := k + N∂T − 1 is chosen for analysis, though
experiments confirm optimal convergence even with smaller κ. In standard Sobolev spaces, the
weak gradient corresponds to the L2-projection of the usual distributional gradient, as established
below.

Lemma 1. For any v ∈ Wh, if v is sufficiently regular, namely v ∈ H1(Ω), then ∇ωv = πκ
h∇v holds

true in [L2(Ω)]d.

Proof Following [2, Lemma 1.23], v ∈ H1(Ω) if and only if JvK = 0 on E i
h, which implies {{v}} = v

on F ∈ E i
h . By applying Definition 1 together with the characterization of the orthogonal projection

πκ
h, we successively obtain:(

∇ωv, Ψh
)

T = −
(
v,∇ · Ψh

)
T +

(
v, Ψh · n

)
∂T

=
(
∇v, Ψh

)
T =

(
πκ

h∇v, Ψh
)

T, ∀Ψh ∈
[
Pκ

d(Mh)
]d.

Since the element T ∈ Mh and the vector field Ψh ∈ [Pκ
d(Mh)]

d are arbitrary, we conclude that
∇ωv = ∇v = πκ

h∇v by choosing Ψh = ∇ωv − πκ
h∇v ∈ [Pκ

d(Mh)]
d.

The following lemma relates the weak gradient to the usual gradient at the local and global level.

Lemma 2. Consider v ∈ Wh. For all ξh ∈
[
Pκ

d(Mh)
]d, the following properties hold:

• On each element T ∈ Mh,(
∇ωv, ξh

)
T
=
(
∇v, ξh

)
T
+
( (

1 + ηh−1/2
T

) (
{{v}}− v

)
, ξh · n

)
∂T

, ∀T ∈ Mh. (3)

• Over the entire mesh Mh,(
∇v −∇ωv, ξh

)
Mh

=
(
JvK,

{{(
1 + ηh−1/2

T

)
ξh

}}
· nF

)
E i

h

. (4)

Proof Eq. (3) follows from integration by parts, followed by subtracting (1).
Summing over all elements in Mh, Eq. (3) is expressed as sum over Eh. We shall separate first the
contributions from internal and boundary faces. On internal faces, any scalar-valued functions α

and β satisfy JαβK = JαK{{β}}+ {{α}}JβK, as well as {{α − {{α}}}} = 0 and similarly for β.
Taking into account the convension for boundary averages and using the latter properties, we
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obtain:∑
T∈Mh

(
v − {{v}},

(
1 + ηh−1/2

T

)
ξh · n

)
∂T

=
∑

F∈E b
h

(
v − {{v}},

(
1 + ηh−1/2

T

)
ξh · nF

)
F
+

∑
F∈E i

h

(r(
v − {{v}}

) (
1 + ηh−1/2

T

)
ξh

z
, nF

)
F

=
∑
F∈E i

h

(
Jv − {{v}}K ,

{{(
1 + ηh−1/2

T

)
ξh

}}
· nF

)
F

=
∑
F∈E i

h

(
JvK,

{{(
1 + ηh−1/2

T

)
ξh

}}
· nF

)
F

.

As a result, assertion (4) follows.
Under the quasi-uniform mesh assumption, we identify {{hT}} ∼ hT on E i

h. The assumption holds
naturally in the context of regular, structured meshes. Let W0

h ⊂ Wh be the subspace of functions
with vanishing trace on ∂Ω. For (v, ξh) ∈ W⋆h × W0

h , define a bilinear form:

a(0)h (v, ξh) :=
∑

T∈Mh

∫
T
∇ωv ·∇ωξh.

To analyze consistency, we first perform elementwise integration by parts using (1) and then sum
over Th. The initial integral is subsequently integrated by parts. Thus,

a(0)h (v, ξh) =
(
− v,∇ ·∇ωξh

)
Mh

+
(
{{v}}+ ηh−1/2

T ({{v}}− v) ,∇ωξh · n
)

∂Mh

=
(
∇v,∇ωξh

)
Mh

+
(
{{v}}− v,

(
1 + ηh−1/2

T

)
∇ωξh · n

)
∂Mh

.

We then use (1) and express the second and third integrals, originally defined over the boundaries
of mesh elements, as sums over the mesh faces. The contributions are accordingly separated into
internal and boundary face terms. As a result, we obtain

a(0)h (v, ξh) = (−∆v, ξh)Mh +

(
{{ξh}}+

η

h1/2
T

({{ξh}}− ξh),∇v · n

)
∂Mh

+

(
{{v}}− v,

(
1 +

η

h1/2
T

)
∇ωξh · n

)
∂Mh

= (−∆v, ξh)Mh + (ξh,∇v · nF)E b
h
−
(
Jηh−1/2

T ξhK, {{∇v}} · nF

)
E i

h

+ ({{ξh}}, J∇vK · nF)E i
h

−
((

1 + ηh−1/2
T

)
JvK, {{∇ωξh}} · nF

)
E i

h

. (5)

Setting v = u and accounting for the continuity of the potential and diffusive flux (2) across E i
h, it

is found that the bilinear form a(0)h lacks consistency.
To enforce consistency, a corrective term is introduced; this corresponds to the second integral
in (6). Similar to the continuous setting, an additional term scaled by δ is included, which yields
a symmetric bilinear form when δ = 1. The parameter δ also helps tuning the discrete stability

6
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constant, see Lemma 4. Let (v, ξh) ∈ W⋆h × W0
h . Introduce

ah(v, ξh) :=
∑

T∈Mh

∫
T
∇ωv ·∇ωξh +

∫
E i

h

η

h1/2
T

{{∇v}} · nF JξhK+ δ

∫
E i

h

η

h1/2
T

JvK {{∇ξh}} · nF. (6)

Consistency is preserved by the last term, given the continuity of the potential. Moreover, Galerkin
orthogonality holds for all δ ∈ R. Numerical results presented later demonstrate that optimal
convergence is achieved even for the case δ = 0. The numerical solution uh ∈ Wh satisfies

ah(uh, ξh) = ( f , ξh)Mh , ∀ξh ∈ W0
h , (7)

with uh|F = πk
h,bg for all F ∈ E b

h . For v ∈ W⋆h, we introduce mesh-dependent discrete seminorms

|||v|||2ω := a(0)h (v, v),

∥v∥2
h,1 := ∥∇v∥2

0,Mh
+ |v|2J , with |v|2J :=

∑
F∈Eh

1
h2

F
∥JvK∥2

0,F .

The norm ∥ · ∥h,1 is well-defined on W⋆h, and also on H1(Mh). Indeed, the nontrivial definiteness
property holds since ∥v∥h,1 = 0 results in ∥∇v∥2

0,T = 0, so v is piecewise constant by the Poincaré
inequality. Additionally, |v|J = 0 implies v = 0 on ∂Ω and that jumps vanish on internal interfaces,
leading to v = 0. The following lemma on seminorm equivalence infers that |||·|||ω is a norm.

Lemma 3. Let v ∈ Wh. Assume that η2 ⩾ max
T∈Mh

hT. Hence,

∥v∥h,1 ≲ |||v|||ω ≲ ∥v∥h,1,

establishing norm equivalence.

Proof Consider general polytopal meshes. Norm equivalence is established using [37, Lemma
3.1].

First, we demonstrate the upper bound. Eq. (8) follows by taking ξh = ∇ωv in (4), then applying
the triangle inequality and noting hF ⩽ hT.

Summing over Eh and applying Cauchy-Schwarz, we obtain (9) after reorganizing the terms
elementwise. The upper bound is then derived via the trace inequality with the constant Ctr.
Hence,

|||v|||2ω := ∥∇ωv∥2
0,Mh

⩽

∣∣∣∣∣∣
∑

T∈Mh

(∇ωv,∇v)T

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∑
F∈E i

h

2
η

hF
∥[[v]]∥0,F · h1/2

F ∥∇ωv∥0,F

∣∣∣∣∣∣∣ (8)

⩽ ∥∇ωv∥0,Mh
∥∇v∥0,Mh

+ 2η

∑
F∈E i

h

h−2
F ∥[[v]]∥2

0,F


1/2 ∑

T∈Mh

∑
F∈FT

hF ∥∇ωv∥2
0,F

1/2

(9)
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⩽ |||v|||ω ∥∇v∥0,Mh
+ 2η |v|J

 ∑
T∈Mh

hT ∥∇ωv∥2
0,∂T

1/2

⩽
(

1 + 2η CtrN1/2
∂T

)
|||v|||ω ∥v∥h,1 . (10)

Accordingly, the required upper bound holds.

Next, we derive a lower bound. Choosing ξh = ∇v in (3) and summing over Mh, we successively
use the triangle, Cauchy-Schwarz and discrete trace inequalities to derive:

∥∇v∥2
0,Mh

⩽
∑

T∈Mh

∥∇ωv∥0,T ∥∇v∥0,T +

∣∣∣∣∣∣
∑

T∈Mh

(
1

h1/2
T

(
1 +

η

h1/2
T

) (
{{v}}− v

)
, h1/2

T ∇v · n

)
∂T

∣∣∣∣∣∣
⩽ ∥∇ωv∥0,Mh

∥∇v∥0,Mh

+ N1/2
∂T C̄tr

 ∑
T∈Mh

∥∇v∥0,Mh

(
h−1/2

T

(
1 + ηh−1/2

T

)
∥{{v}}− v∥0,∂T

)2
1/2

.

We then need to bound the second term. Let F ∈ E i
h and T ∈ TF. Assume n1 ̸= 0, with ni

(1 ⩽ i ⩽ d) the components of nF (otherwise, the first nonzero component of nF is used instead of
n1). Define q0 := {{v}}− v ∈ Pk

d(F).
By [37, Lemma 3.1], there exists q ∈ Pκ

d(T), with κ = k + N∂T − 1, satisfying the properties [37,
(18)-(20)]. We define ξ̃ ∈ [Pκ

d(T)]
d such that its first component is q/n1, with all others zero. This

ensures ξ̃ · nF = q. Let p = (1 + ηh−1/2
T )({{v}}− v) ∈ Pk

d(F). Owing to [37, (18)], we infer:((
1 + ηh−1/2

T
)(
{{v}}− v

)
, ξ̃ · nF

)
F

:= (p, q)F = (p, q0)F =
(
1 + ηh−1/2

T
)
∥{{v}}− v∥2

0,F , (11a)(
∇v, ξ̃

)
T = 0, and

((
1 + ηh−1/2

T

)
({{v}}− v), ξ̃ · nF

)
∂T\F

= 0. (11b)

Here, hT ⩽ 4hF was assumed. Using [37, (26)] and (11), a constant Cα0 > 0, that depends on k,
N∂T, and the smallest angle between F and its adjacent faces, exists such that:∥∥ξ̃

∥∥
0,T ⩽ Cα0 h1/2

T ∥q0∥0,F = Cα0 h1/2
T ∥{{v}}− v ∥0,F .

Using the identity ∥[[v]]∥0,F = 2 ∥{{v}}− v∥0,F, valid over internal faces E i
h, we proceed as follows.

With ξh = ξ̃ in (3), we obtain by Cauchy-Schwarz(
1 + ηh−1/2

T

)
∥[[v]]∥0,F ⩽ 2

(
1 + ηh−1/2

T

)
∥{{v}}− v∥0,F ⩽ 2Cα0 h1/2

T ∥∇ωv∥0,T. (12)

Using (12) and summing over Eh, we obtain:

∥∇v∥0,Mh
⩽
(

1 + N1/2
∂T Cα0 C̄tr

)
|||v|||ω . (13)

Using the first inequality in (12) with hT ⩽ 4hF and collecting the contributions over all faces

8
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F ∈ Eh, we obtain

η|v|J ⩽ 8Cα0 |||v|||ω . (14)

Together with (13), we derive the upper estimate:

∥v∥h,1 ⩽ Cω |||v|||ω , (15)

with

C2
ω =

(
8η−1Cα0

)2
+
(

1 + Cα0 N1/2
∂T C̄tr

)2
⩾ 1.

Collecting (10) and (15), we obtain the desired double inequality:

C−1
ω ∥v∥h,1 ⩽ |||v|||ω ⩽

(
1 + 2η N1/2

∂T Ctr

)
∥v∥h,1.

3 Convergence analysis

Let ϕπ := u − πk
hu and ϕh := πk

hu − uh, allowing the approximation error to be decomposed as
u − uh = ϕπ + ϕh. We aim to establish error estimates in |||·|||ω and L2 norms.

Lemma 4. (Discrete stability) Discrete coercivity of ah over Wh holds in the |||·|||ω-norm, provided that
|δ + 1| < δ̄, with δ̄ a threshold value independent of h. That is, there exists Cs > 0 s.t.

ah(ψh, ψh) ⩾ Cs |||ψh|||
2
ω , ∀ψh ∈ Wh.

Proof To establish discrete coercivity, we first bound the consistency term in (6). As in (9), we use
hF ⩽ hT, then apply Cauchy–Schwarz and trace inequality, involving constants C̄tr and N∂T. For
any ψh ∈ Wh, we obtain

∣∣∣∣∣∣∣
∑
F∈E i

h

∫
F

h−1/2
T {{∇ψh}} · nFJψhK

∣∣∣∣∣∣∣ ⩽

∑
F∈E i

h

h−2
F ∥[[ψh]]∥2

0,F


1/2 ∑

T∈Mh

∑
F∈FT

hF ∥∇ψh|T · nF∥2
0,F

1/2

⩽ |ψh|J

 ∑
T∈Mh

hT ∥∇ψh∥2
0,∂T

1/2

⩽ N1/2
∂T C̄tr∥∇ψh∥0,Mh |ψh|J

⩽ 8Cα0 η−1N1/2
∂T C̄tr

(
1 + Cα0 C̄tr N1/2

∂T

)
|||ψh|||

2
ω . (16)

The last inequality (16) results from the bounds on ∥∇ψh∥0,Mh (13) and |ψh|J (14). Then,

ah(ψh, ψh) = |||ψh|||
2
ω + η(1 + δ)

∑
F∈E i

h

∫
F

1

h1/2
T

{{∇ψh}} · nF JψhK ⩾ Cs |||ψh|||
2
ω ,

with Cs := 1 − 8 |1 + δ|Cα0 N1/2
∂T C̄tr

(
1 + Cα0 N1/2

∂T C̄tr

)
> 0,

9
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provided that |δ + 1| < δ̄ with δ̄−1 := 8Cα0 N1/2
∂T C̄tr(1+Cα0 N1/2

∂T C̄tr). Therefore, by Lax–Milgram, (7)
is well-posed.

Lemma 5. The bilinear form is bounded on W⋆h × Wh:∣∣∣ah(v, ξh)
∣∣∣ ⩽ Cb |||v|||ω |||ξh|||ω , ∀v ∈ W⋆h, ∀ξh ∈ Wh, (17)

with Cb > 0 a mesh–independent constant.

Proof For v ∈ W⋆h and ξh ∈ Wh, the triangle inequality helps bounding the terms in ah. Summing
over faces, applying Cauchy–Schwarz, and regrouping contributions of Eh yields (18a).
In addition, the discrete trace inequality with constant C̄tr gives (18b), while bounds (13) and (15)
lead to (18c). Thus, we have

|ah(v, ξh)| ⩽ ∥∇ωv∥0,Mh∥∇ωξh∥0,Mh

+ η

 ∑
T∈Mh

∑
F∈FT

hT
∥∥∇ψh

∥∥2
0,∂T

1/2

|ξh|J

+ |δ| η |v|J

 ∑
T∈Mh

∑
F∈FT

hT
∥∥∇ξh

∥∥2
0,∂T

1/2

(18a)

⩽ |||v|||ω |||ξh|||ω + N1/2
∂T C̄tr ∥∇v∥0,Mh

η |ξh|J

+ |δ| N1/2
∂T C̄tr η |v|J ∥∇ξh∥0,Mh (18b)

⩽ |||v|||ω |||ξh|||ω + 8Cα0 N1/2
∂T C̄tr

(
1 + |δ|

) (
1 + Cα0 N1/2

∂T C̄tr

)
|||v|||ω |||ξh|||ω (18c)

⩽
(

1 + 8(1 + |δ|)Cα0 N1/2
∂T C̄tr

(
1 + Cα0 C̄tr N1/2

∂T

))
|||v|||ω |||ξh|||ω . (18d)

From (18d), the desired boundedness (17) then holds with

Cb = 1 + 8
(
1 + |δ|

)
Cα0 N1/2

∂T C̄tr

(
1 + Cα0 N1/2

∂T C̄tr

)
,

which is independent of h and η.

Lemma 6. Assume sufficient regularity with u ∈ Hk+1(Ω). Consider a quasi-uniform mesh with optimal
polynomial approximation properties and h sufficiently small. Then,

|||ϕπ |||ω ≲ hk |u|k+1,Ω. (19)

Proof For T ∈ Mh, we use (3) and the triangle inequality in (20a). Note that {{u}} = u, so
[[πk

hu]] = [[−ϕπ]] on Eh. The Cauchy-Schwarz and trace inequalities yield (20b), while (12) and the
inverse inequality lead to (20c). Hence,∣∣∣(∇ωϕπ, ξh

)
T

∣∣∣ ⩽
∣∣∣(∇ϕπ, ξh

)
T

∣∣∣+ ∣∣∣(h−1/2
T

(
1 + ηh−1/2

T
) (

{{ϕπ}}− ϕπ

)
, h1/2

T ξh · n
)

∂T

∣∣∣ (20a)

⩽
∣∣∣∇(u − πk

hu
)∣∣∣

0,T
∥ξh∥0,T

+(1/2)CtrN1/2
∂T h−1/2

T
(
1 + ηh−1/2

T
)
∥[[πk

hu]]∥0,∂T ∥ξh∥0,T (20b)

10
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⩽ C̄ hk|u|k+1,T ∥ξh∥0,T + C ∥∇ωϕπ∥0,T ∥ξh∥0,T. (20c)

Here, C > 0 is determined solely by Cα0 , N∂T and Ctr (trace inequality constant). Letting ξh =

∇ωϕπ and summing over mesh elements, the bound (19) holds provided C < 1, using the
identity ∥[[πk

hu]]∥0,∂T = ∥[[ϕπ]]∥0,∂T in (20b). Alternatively, for sufficiently smooth u and large
k, the projection πk

hu adequately captures the smoothness of u, yielding near-continuity across
E i

h. When h is small, intra-element variations in u and its derivatives are reduced, minimizing
interface jumps. Quasi-uniformity of the mesh ensures geometric regularity and prevents excessive
contributions of individual elements. Thus, the first term in (20b) dominates, and the bound scales
as hk.
Remark that if neither of the two aforementioned conditions are satisfied, then, by the trace
inequality, the second term in (20b) dominates and results in a quasi-optimal convergence in |||.|||ω.

That will result subsequently in a suboptimal decay hk+ 1
2 for the L2-error.

Theorem 1 (|||·|||ω-error bound). Assume the conditions of Lemma 6. Let u ∈ W⋆ solve (1), and let
uh ∈ Wh solve (7). There holds

|||u − uh|||ω ≲ hk |u|k+1,Ω. (21)

Proof Using the triangle inequality, as well as the stability, consistency, and boundedness proper-
ties, we deduce the estimate:

|||u − uh|||ω ⩽ |||ϕπ |||ω + |||ϕh|||ω

⩽ |||ϕπ |||ω +
1

Cs

ah(ϕh, ϕh)

|||ϕh|||ω

⩽ |||ϕπ |||ω +
1

Cs

|ah(ϕπ, ϕh)|

|||ϕh|||ω

⩽

(
1 +

Cb
Cs

)
|||ϕπ |||ω .

The latter bound is valid for uh = πk
hu. The estimate (21) results from Lemma 6.

Theorem 2 (∥ · ∥0,Ω-error bound). Assuming the conditions of Lemma 6, elliptic regularity, and setting
δ = 1, we obtain the estimate:

∥u − uh∥0,Ω ≲ hk+1 |u|k+1,Ω. (22)

Proof A duality argument is used after extending ah to W⋆h × W⋆h. The symmetry of ah enables
using the Aubin–Nitsche technique [41]. Let Ψ ∈ H2

0(Ω) solve the auxiliary problem:

−∆Ψ = u − uh = ϕπ + ϕh.

Elliptic regularity ensures the existence of CΩ > 0, depending solely on Ω, s.t.

∥Ψ∥2,Ω ⩽ CΩ∥ϕπ + ϕh∥0,Ω.

Remark that ah(ϕπ + ϕh, π1
hΨ) vanishes by Galerkin orthogonality. Exploiting the symmetry of ah,

11
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this gives

∥u − uh∥2
0,Ω = ah(Ψ, ϕπ + ϕh) = ah(ϕπ + ϕh, Ψ) = ah(ϕπ + ϕh, Ψ − π1

hΨ).

Using Lemma 5, the approximation properties for π1
h, and elliptic regularity, we infer:

∥u − uh∥2
0,Ω ≲

∣∣∣∣∣∣∣∣∣Ψ − π1
hΨ
∣∣∣∣∣∣∣∣∣

ω
|||ϕπ + ϕh|||ω

≲ h ∥Ψ∥2,Ω |||ϕπ + ϕh|||ω

≲ h ∥ϕπ + ϕh∥0,Ω |||ϕπ + ϕh|||ω .

Finally, error estimate (22) follows directly from Theorem 1.

4 Model problems and applications

This section presents a series of model problems, building on the framework established earlier. We
gradually increase the complexity, beginning with a time-dependent parabolic problem featuring
a heterogeneous diffusion. This helps to tackle a biologically motivated optimal control problem
involving photobleaching in the endoplasmic reticulum of budding yeast. We then introduce
a time-dependent level–set problem, formulated using the weak gradient (1). This serves as a
foundation for future work on multiphase flow modeling [42].

Weak Galerkin method for Helmholtz problem

To address the unsteady heterogeneous diffusion setting, we first introduce a Helmholtz problem,
replacing the Laplacian by the Helmholtz operator H = I − ∆, with I the identity operator, to
ensure uniqueness.

We seek u satisfying

Hu = f , in Ω, and ∇u · n = γ, on ∂Ω.

Here, f ∈ H−1(Ω) and g ∈ H−1/2(Ω). In analogy with (5), the variational formulation reads:

aN
h
(
uh, ξh

)
=
(

f , ξh
)
Mh

+
(
γ, ξh

)
E b

h
,

with

aN
h
(
uh, ξh

)
=
(

uh, ξh

)
Mh

+
(
∇ωuh,∇ωξh

)
Mh

+
∑
F∈E i

h

η

h1/2
F

∫
F
{{∇v}} · nF JξhK+

∑
F∈E i

h

δη

h1/2
F

∫
F
JvK {{∇ξh}} · nF.

Diffusion-dependent problem with heterogeneity

To tackle the yeast problem, we first consider a spatially varying heterogeneous and positive
diffusion field ϖ ∈ L∞(Ω). Given f ∈ L2(Ω), the continuous problem reads:

12
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Find u : Ω → R such that

∂tu −∇ · (ϖ∇u) = f , in (0, T)× Ω,

u(0, .) = u0(.), in Ω,

u = 0, on (0, T)× ∂Ω.

(23)

The diffusive flux −ϖ∇u lies in H(div;Ω). For the targeted application in Subsection 4, ϖ is
required to have discontinuities across subdomains of the endoplasmic reticulum [43]. The
problem addressed here (23) will correspond, in a sense, to the direct problem in the yeast
test. Superscripts denote time-step indices. Time discretization uses the second-order backward
differentiation formula, initialized with u−1 = u0 for convenience. The bilinear form (6) is
modified to ensure consistency as follows:

aϖ
h (v, ξh) :=

∫
Mh

ϖ ∇ωv ·∇ωξh +

∫
E i

h

η√
hT

{{ϖ∇v}} · nF JξhK+
∫
E i

h

δη√
hT

JvK {{ϖ∇ξh}} · nF,

for every v ∈ W⋆h and ξh ∈ W0
h . For any n ⩾ 1, the weak formulation reads:

(3un+1
h , ξh)Mh + 2∆t aϖ

h (u
n+1
h , ξh) = (4un

h − un−1
h + 2∆t f n+1, ξh)Mh , ∀ξh ∈ Wh.

It is worth noting that model (23) captures piecewise-constant diffusivities and jump conditions
across internal interfaces (see, e.g., Example 5 and Figure 14), mirroring the mother, bud, and bud-
neck subdomains of the ER. In such settings, the solution remains continuous but not differentiable;
this is precisely the setting where the present method can be particularly advantageous, as the
interface term acts locally yet preserves consistency on polytopal meshes. The tests presented
in the first part of Example 5, therefore, serve as simplified yet representative versions of the ER
problem before moving to the full 3D geometry and data-driven parameter identification.

Optimal control problem with heterogeneous diffusion in yeast cell

We use the aforementioned WG framework to simulate the dynamics of fluorescent molecules
within the endoplasmic reticulum (ER) during yeast cell division, using a geometry extracted
from experimental imaging and lab data [44]. The ER is partitioned into the mother region Ωm,
bud region Ωb, and the sheet-like bud-neck Ωr; see Figure 16. We formulate a PDE-constrained
optimization to infer heterogeneous diffusion within these domains, assuming that diffusion
occurs inside the ER volume. FLIP experiments repeatedly bleach a region with intense light,
causing fluorescence loss driven by molecular mobility [45]. When applied to Ωb, fluorescence
drops rapidly there but decays slowly in Ωm, revealing compartmentalization [43]. This was
studied using continuous Galerkin in [44].

We here study heterogeneous volumetric diffusion in the ER, following a photobleaching in the
bud. Post-bleach dynamics is simulated using the WG framework. A brief outline of the optimal
control formulation is provided. Let u be the concentration at t ∈ (0, T). The control variables
ϖm, ϖb, and ϖr are the diffusion coefficients in Ωm, Ωb, and Ωr, respectively. The total diffusion
function is ϖ = ϖmχm + ϖbχb + ϖrχr ∈ L∞(Ω), where χi is the characteristic function of Ωi. A
penalty approach is employed [46], with 1/ε enforcing intensity reduction in a small bleached
region Ω1, represented by the characteristic function χ. Given (u0, ϖm, ϖb, ϖr), the direct problem
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writes

∂tu − div
(
ϖ∇u

)
+

1
ε

χ u = 0, in (0, T)× Ω, (24)

u(0, ·) = u0(·), in Ω.

Experimental measurements yield compartment-specific fluorescence loss over (0, T), normalized
to pre-bleaching levels. Let Fm(t) and Fb(t) denote the averaged fluorescence signals in Ωm
and Ωb, respectively, obtained from twenty experiments with bleaching in Ω1 (see [44]). The
inverse problem seeks the optimal diffusion parameters (ϖ⋆

m, ϖ⋆
b , ϖ⋆

r ) that best match the model
predictions to the target measured fluorescence functions Fl(t), for l ∈ {m, b}. The problem writes:

(ϖ⋆
m, ϖ⋆

b , ϖ⋆
r ) = arg inf

ϖj

E
(
u ; ϖm, ϖb, ϖr

)
,

subject to (24) as a constraint. The cost function is:

E(u;ϖm, ϖb, ϖr) =
∑

i∈{m,b}

αi
2

(∫
Ωi,T

u −

∫T

0
Fi(t)

∫
Ωi

u0

)2

+
∑

j∈{m,b,r}

δj

2
ϖ2

j +
δ

2
|ϖm − ϖb|

2 .

The terms scaled by αl measure the mismatch between simulated and observed fluorescence,
while the δ-term enforces similar diffusion behavior across Ωm and Ωb as biologically expected.
The Tikhonov regularization terms δj mitigate potential ill-posedness and prevent uncontrolled
parameter growth.

Let v be the adjoint variable associated with the state u. We define the Lagrangian L and derive
the optimality conditions. The adjoint equation is obtained by enforcing DL[δu] = 0. Given u and
control parameters ϖj, j = m, b, r, the adjoint problem reads:

−∂tv − div
(
ϖ∇v

)
+

1
ε

vχ =
∑

k=m,b

αk

(∫
Ωk,T

u −

∫
Ωk,T

Fku0

)
χk, (25)

in (0, T)× Ω. Since adjoint equations evolve backward in time, they require terminal conditions
v(T, ·) = 0 in Ω. Rather than explicitly computing the optimal controls at each iteration, a
gradient-based optimization algorithm updates the control variables iteratively, driven by the
Gâteaux derivative of L in the control variables.

Time-dependent level–set problem - towards multiphase modeling

To illustrate the weak gradient applicability in multiphysics contexts, we consider its use for steady
advection–reaction and time-dependent level–set problems. Multiphase flow simulations [42, 47,
48] pose challenges due to mass loss. In fact, global mass correction [49] can induce non-physical
behavior, highlighting the need for approaches with improved mass conservation. Let µ ∈ L∞(Ω)

and β be a Lipschitz continuous vector. The stationary advection–reaction problem reads:

β ·∇φ + µφ = f , in Ω, (26)

14
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with φ = φb on the upstream boundary. The L2-coercivity requires a uniformly positive µ − 1
2∇ ·

β > 0. The exact solution is assumed in W⋆ := W ∩ H1(Mh), with W the graph space. The inflow
boundary condition is imposed weakly. Set κ = k and Wh := Pk

d(Mh), the problem reads:

aβ
h (v, ξh) =

∫
Ω

f ξh, ∀v ∈ W⋆ + Wh, and ξh ∈ Wh,

with

aβ
h (v, ξh) =

∑
T∈Mh

∫
T

µvξh + β ·∇uξh +
∑
F∈E i

h

∫
F

η

h1/2
F

JvK{{ξh}}β · nF +

∫
∂Ω

(β · nF)
⊖vξh.

Here, x⊖ = (|x|− x)/2. Consistency is verified by substituting u into aβ
h , while discrete stability is

readily established for Wh. Rigorous mathematical proofs will be presented in future work.
We next turn to the level–set method, which is an interface–capturing approach. Let φ be a level-set
function, initially defined as a signed-distance. At each t ∈ (0, T), the deformable interface is
represented as

I(t) = { ξ ∈ Ω such that φ(t, ξ) = 0 }.

Let β be a prescribed advection vector. With inflow boundary conditions, φ evolves according to
the Hamilton–Jacobi equation:

∂t φ + β ·∇φ = 0, in (0, T)× Ω.

5 Numerical experiments

Hereafter, we report computational results validating the theoretical analysis and highlighting
the accuracy of the weak Galerkin approach. Simulations are carried out on the Almesbar HPC
cluster (204 CPU nodes), employing up to 52 cores for 3D cases. Each node hosts dual Intel Xeon
Gold 6230R CPUs (Cascade Lake, 26 cores, 2.1GHz, Q1 2020).
The framework is implemented within the C++ library Rheolef [50]. Parallel computations use
MPI1, with MUMPS handling matrix factorization and direct solves on distributed-memory
systems. Meshes are generated via Gmsh [51]. The post-processing is done with Paraview2 and
Gnuplot3.

Example 1: Two-dimensional validation: convergence analysis

Consider a known exact solution to assess convergence. For x = (x, y) ∈ Ω = [0, 1.5]2, define

u(x) = xy(1 − x)(1 − y)ex−y.

1 http://www.mpich.org, version 4.3.0, 2025-05-30.
2 https://www.paraview.org, version 5.13, 2025-05-30.
3 http://www.gnuplot.info, version 6.0.1, 2025-05-30.
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(a) (b) (c)

Figure 1. Examples of 2D meshes with different element types composed of: (a) triangles (N∂T = 3), (b)
quadrilateral elements (N∂T = 4), (c) both triangles and quadrilaterals (N∂T = 4)

Accordingly, f can be expressed explicitly as:

f (x) = −2x(y − 1)(y − 2x + xy + 2)ex−y.

Let ϵh := u − uh be the discretization error. Unstructured quasi-uniform meshes are generated
using different element types: triangles (N∂T = 3) and quadrangles (N∂T = 4), as shown in
Figure 1.
Spatial accuracy is assessed by computing the |||·|||ω- and L2-errors over a sequence of mesh
refinements. The rate of convergence, denoted by ROC, between refinement levels r − 1 and r is

ROC =
log
(
Er−1/Er

)
log
(
hr−1/hr

) , r ≥ 1,

with Er ∈ {∥ϵ
(r)
h ∥0,Ω,

∣∣∣∣∣∣∣∣∣ϵ(r)h

∣∣∣∣∣∣∣∣∣
ω
} the error at level r in the chosen norm, and hr the characteristic

mesh size at level r.
Various approximation spaces are considered for uh and the weak gradient. Initially, δ = −1 is set,
and P1 approximations are used for uh. By varying the degree of polynomial approximation for
the weak gradient discretization, L2-error convergence is reported. The results in Table 1 align
with the theory: for k = 1, Theorem 2 predicts ∥ϵh∥0,Ω = O(hk+1) = O(h2), and the observed
ROC approaches 2 across all (κ, δ) choices. Varying κ at fixed k mainly affects pre-asymptotic
constants on coarse meshes.
We then vary δ ∈ {−1, 0, 1}. Optimal convergence is observed for δ = 1 (i.e. when ah is symmetric)
and likewise for δ ∈ {0,−1}. The polynomial approximation degree is then increased by setting
k = 2. In this setting as well, the choices δ ∈ {0, 0.5, 1} leave the asymptotic order unchanged.
In addition, the computations attain the expected L2 accuracy order on triangular meshes, even
when κ is smaller than k + N∂T − 1, for various values of δ. In what follows, we set δ = 0, unless
otherwise mentioned.
Consider now higher-order polynomial degrees with k ⩾ 3 on triangular mesh sequences. Table 2
demonstrates optimal convergence that aligns with the theoretical rates in both the L2 and |||·|||ω
norms. Note that, at finer mesh resolutions, round-off errors eventually influence the convergence
order once the error reaches a threshold value.
For k = 3, 4, 5, 6, the measured ROCs in L2 are close to k + 1 and those in |||·|||ω are close to k, exactly
as predicted by Theorem 1 and Theorem 2. The slight departures on the finest levels (where the
errors reach ∼ 10−11–10−13) are consistent with round-off effects rather than a loss of asymptotic
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Figure 2. Parallel performance: CPU time for (left) assembly and (right) linear solve versus DOFs per processor
(log–log scale)

behavior.
Next, we examine more general unstructured but quasi-uniform meshes with N∂T = 4. Con-
vergence in L2 and |||·|||ω norms is studied. Table 3 shows the same trend on polytopal meshes
with N∂T = 4: errors decrease as predicted: |ϵh|0,Ω ∼ hk+1 and |||ϵh|||ω ∼ hk. Using κ = k + N∂T − 1
(analysis choice) or κ = k (reduced choice for k = 3) delivers numerically the same asymptotic
rates, indicating that optimal convergence is robust to the choice of element shapes and to the
degree used for the weak-gradient unknowns.
Having verified that the measured rates match the theoretical predictions for a range of (k, κ)

and mesh types, we next examine the sensitivity to the stabilization parameter η. With fixed
approximation spaces, we take k = κ = 3 for uh and the weak gradient and use δ = 1 (symmetric
discrete bilinear form) on unstructured triangular meshes. To properly choose η and assess its
role, we vary η ∈ {2, 1, 0.1, 0.02, 0} and compare against the exact solution in the ∥ · ∥0,Ω and
|||·|||ω norms. Results are presented in Table 4. For η = 2, 1, 0.1 the scheme exhibits the predicted
optimal rates–O(h4) in L2 and O(h3) in |||·|||ω. In contrast, for η = 0.02 and η = 0 (no stabilisation),
optimality is lost: L2 and |||·|||ω errors stagnate or degrade on fine meshes. This is consistent with
the condition in Lemma 3, which requires η ≳ h1/2; with a fixed very small η, the condition is
violated as h → 0. In the remainder, we set η = 1 unless stated otherwise.
Thereafter, we briefly assess the runtime and parallel efficiency of our implementation; a thorough
performance assessment is not undertaken in this work. We set k = κ = 2, η = 10, and δ = 1
on triangular meshes. We focus on the assembly and linear solve steps, which are the most
time-consuming.
Figure 2 reports CPU times (on a log–log scale) versus degrees of freedom (DOFs) per processor
for both steps. We interpret these plots in terms of strong scaling: With the problem size unchanged,
ideal behavior halves the runtime when the number of processors doubles (i.e., unit slope when
time is plotted against DOFs per processor on a log–log scale). The results show near-ideal strong
scaling for finer meshes in both assembly and linear solve, with a degradation on coarser meshes
due to reduced work per core and communication overhead. Note that a more systematic scaling
study on larger, multiphysics problems will be reported in a forthcoming work based on an
extension of the present method.

Example 2: Three-dimensional validation: convergence analysis

We now assess errors in the three-dimensional case with Ω = [0, 1]3. A unit cubic geometry is
meshed using unstructured quasi-uniform tetrahedral (N∂T = 4) meshes and structured prismatic
(N∂T = 5) meshes, as shown in Figure 3. Spatial accuracy is assessed by comparing numerical and
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exact solutions after mesh refinements, using errors in |||·|||ω, L2, L∞, and H1 norms.

Consider the test case with the exact analytical solution:

u(x) = sin(2πx) sin(2πy) sin(2πz), in Ω.

This corresponds to f (x) = 12π2u(x).
For polynomial degree approximation k, we set κ = k and δ = 1. The error histories presented
in Figure 4 confirm optimal convergence rates in the |||·|||ω and L2 norms for tetrahedral meshes.
Additionally, the error histories in Figure 5 show convergence rates of order hk in the H1 seminorm
and hk+1 in the L∞ norm.

Thereafter, we consider structured prismatic meshes. The convergence shown in Figure 6 confirms
the optimal decay in |||·|||ω and L2 norm as predicted by the theory. Furthermore, the same
convergence rates of order hk in the H1 seminorm and hk+1 in the L∞ norm are observed, consistent
with the results for tetrahedral meshes, as illustrated in Figure 7.

We conclude this example with a remark on the symmetry term in the bilinear form (6). Setting
δ = 1 renders the discrete bilinear form symmetric (in line with the continuous setting) and this
choice is used to prove the ∥ · ∥0,Ω-error estimate via an Aubin–Nitsche duality argument; see
Theorem 2. In practice, however, we observe the same optimal convergence for several values of
δ, as highlighted in Example 1. Consider here the 3D test with 196 ′608 degrees of freedom (take
η = 0.75 and N∂T = 4). On 6 cores, the wall-clock time for both assembly and linear solve is 24.4 s

Figure 3. Example 2 (3D). (left) tetrahedral meshes. (middle) prismatic meshes. (right) Snapshots showing
iso-value 0.5 for k = κ = 2, δ = 0.37, η = 0.75 and N∂T = 4. HPC computations used 24 computing cores
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Figure 4. Example 2 (3D). Error convergence versus h (log–log scale) for tetrahedral meshes. Solid black lines
indicate the theoretical rates
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Figure 5. Example 2 (3D). Error convergence versus h (log–log scale) for tetrahedral meshes. Solid black lines
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Figure 6. Example 2 (3D). Error convergence versus h (log–log scale) for prismatic meshes. Solid black lines
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Figure 7. Example 2 (3D). Error convergence plotted against h on a log-log scale for prismatic meshes. Solid
black lines indicate the theoretical rates

for δ = 1 versus 24.1 s without assembling the term involving δ, indicating also a negligible cost
difference in the three-dimensional case.

Example 3: Error analysis with curved boundaries

Herein, we assess the accuracy of domains with non-simplicial boundaries. We consider the unit
disk Ω ⊂ R2 with curved boundary, and generate successively refined unstructured meshes. To
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accurately capture the curvature, we use high-degree polynomial approximations for the boundary
elements. Figure 8 illustrates sample meshes with high-order boundary edge approximations. For
validation, consider a test case with

u(x) = cos
(

5π

2
∥x∥2

)
, with ∥x∥2 =

√
x2 + y2.

That corresponds to

f (x) =

25π2

4

(
2 sin( 5π

2 ∥x∥2)
5π ∥x∥2

+ cos
(

5π
2 ∥x∥2

))
, if ∥x∥2 ̸= 0,

50π2

4 , if ∥x∥2 = 0.

The error history and convergence rates are presented in Figure 9 for several k ∈ {1, 2, 3, 4}, with
κ = k + N∂T − 1 and a curved boundary depending on the different values of k. Numerical results
confirm an optimal convergence, as predicted by the theory.

Example 4: Helmholtz problem

We now focus on the Helmholtz problem presented in Subsection 4. Accuracy is examined in one,
two, and three-dimensional settings.

In one dimension (d = 1), consider an analytical solution u(x) = sin(πx) in a unit domain [0, 1].
The corresponding data are:

f (x) = (1 + π2) u(x),

γ(x) = −π.

For polynomial degrees k with κ = k + 1 and δ = 1, Figure 10 reports the 1D errors and observed
convergence rates in the L2 and |||·|||ω norms. The results confirm the predicted optimal L2-error
rates of k + 1 and |||·|||ω-error rates of k, which is consistent with the theoretical analyses.

For d = 2, we take a computational domain [0, 1]2 and set

u(x) = sin(πx) sin(πy),

f (x) = (1 + 2π2)u(x),

Fb
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Figure 8. Example 3. Unstructured meshes of 14 elements with high-order approximations of the curved
boundary
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Figure 9. Example 3. (left - middle) Solution snapshots computed on Mh with hmin = 0.00293133, hmax =
0.0217692 and δ = 1. (right) Error convergence computed in the norm ∥ · ∥0,Ω. Solid black lines indicate the
theoretical rates
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Figure 10. Example 4. Spatial convergence in the norms |||.|||ω and L2 plotted with respect to h on a log-log scale
for the Helmholtz problem in 1D. Solid black lines indicate the theoretical rates
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Figure 11. Example 4. Spatial error convergence in the norms |||.|||ω and L2 plotted with respect to h on a log-log
scale for the Helmholtz problem in 2D. Solid black lines indicate the theoretical rates

γ(x) = −π(sin(πx) + sin(πy)).

The error history and convergence rates are reported in Figure 11, depicting an optimal conver-
gence in both the |||·|||ω and L2 norms.
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Figure 12. Example 4. Spatial convergence in the norms |||.|||ω and L2 plotted with respect to h on a log-log scale
for the Helmholtz problem in 3D. Tetrahedral meshes are used. Solid black lines indicate the theoretical rates
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Figure 13. Temporal convergence toward the exact solution for heterogeneous diffusion with α = 0.5 (left) and
α = 0.1 (right). Computations are performed with h = 1/32 and ∆t = 10−1

In 3D, we consider the unit cube domain together with the following exact analytical solution:

u(x) = sin(πx) sin(πy) sin(πz).

The corresponding source and boundary data are:

f (x) = (1 + 3π2)u(x),

γ(x) = −π(sin(πx) sin(πy) + sin(πy) sin(πz) + sin(πz) sin(πx)).

Figure 12 confirms optimal convergence in line with theoretical estimates. As errors decrease, the
growing system size leads to memory limitations, making direct solvers impractical. Iterative
solvers then become necessary and offer a more memory-efficient alternative.

Example 5: Time-dependent heterogeneous protein diffusion in budding yeast cell

In the first part, we consider the heterogeneous diffusion case described in Subsection 4, with a
discontinuous coefficient, piecewise defined as ϖ(x) = 1 for x ∈ [0, 0.5) and ϖ(x) = α > 0 for
x ∈ [0.5, 1]. Set f = 1 as a constant source term. This one-dimensional study assesses whether the
method reproduces the expected C0–but not C1–steady-state profile under mesh refinement (jump
in the derivative). The parameter α plays the role of a compartment-dependent diffusivity and
anticipates the contrast between the mother/bud regions and the bud neck observed in the ER.
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This problem thus serves as a simplified surrogate, mirroring the mother/bud/bud-neck partition
of the ER while using the same discretization and stabilization choices.
The jump in ϖ across x = 0.5 induces a discontinuity in n ·∇u. The exact steady-state solution
of (23) remains continuous but is not differentiable at x = 0.5, as follows:

u(x) =


x

4α

(
1 + 3α

2(1 + α)
− x
)

, in [0, 0.5),

1 − x
2

(
x +

1 − α

2(1 + α)

)
, otherwise.

Figure 13 illustrates the exact solution for α = 0.5 and α = 0.1. As expected, the discontinuity in
the derivative at x = 0.5 becomes more pronounced as diffusion heterogeneity increases.
To complement the analytical consistency proof, we have verified consistency numerically by
checking spatial convergence in Example 1 and Example 2 for manufactured smooth solutions, ob-
serving the predicted rates k+ 1 in the L2 norm and k in the |||·|||ω norm, respectively–consistent with
a convergent scheme under mesh refinement. In addition, for this time-dependent heterogeneous-
diffusion test, we track the discrete residual at fixed h = 1/32 and ∆t = 10−1. As shown in
Figure 14, the residual decreases steadily for both α = 0.5 and α = 0.1, confirming convergence
toward the steady state.
Figure 15 shows how varying diffusion heterogeneity, with α = 0.1 (moderate) and α = 0.01
(pronounced), affects the solution profile along x = 0.5 and alters the peak value of the solution.
The time evolution across various spatial resolutions confirms convergence to the steady-state for
different polynomial degrees. The solution profile is well captured, particularly near x = 0.5.
In the second part, we focus on the optimal control framework outlined in Subsection 4. We
now apply exactly the same WG discretization and time stepping, with a piecewise-constant
diffusion over the ER subdomains, which is estimated from fluorescence-loss data via the PDE-
constrained optimization in Subsection 4. This provides a direct continuity from the previous
model problem to the biological application. Concretely, (Ωm, Ωb, Ωr) play the role of the two-and-
one subdomains in the 1D test, with ϖ piecewise constant and discontinuous only across known
interfaces (the bud neck), so that no change to the numerical scheme is required–only the geometry
and data-driven parameters differ. The ER geometry Ω is reconstructed from confocal fluorescence
microscopy images of cells expressing the ER-luminal marker GFP-HDEL [44]. The ER volume
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Figure 14. Residual decay for time-dependent heterogeneous diffusion with α = 0.5 (a) and α = 0.1 (b).
Parameters: h = 1/32 and ∆t = 10−1. The residual shown is the discrete ℓ2-norm, plotted versus the time
iterations (log scale on the y-axis)
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Figure 15. Steady-state computed vs. exact solution against mesh resolutions for varying polynomial degrees
and heterogeneity parameters: α = 0.1 (top), α = 0.01 (bottom)

was discretized with a tetrahedral mesh generated via Gmsh’s Frontal Delaunay algorithm and
then quality-improved with Netgen [51]; see Figure 16.
Confocal image data were acquired at ETH Zurich on a Zeiss LSM 780 (ZEN 2011); see acquisition
details in [44]. Fluorescence signals were normalized by total intensity within each cell compart-
ment. They are shown as error bars in Figure 17, representing the standard deviation (SD). Based
on this dataset, molecular diffusion is analyzed by tracking fluorescence decay post-bleaching,
and optimal diffusion parameters are identified within the framework of Subsection 4. Because
measurements are available at a finite set of times with variability across replicates, our quantita-
tive comparison overlays the simulated curves with the experimental mean ± SD envelopes at
those times. This directly addresses agreement-in-time between model and data.
Consider experiments with photobleaching applied to the bud compartment. The initial control

Figure 16. Snapshots displaying the volumetric quasi-regular tetrahedral mesh Mh of the yeast endoplasmic
reticulum. Mesh properties: minT∈Mh hT = 5.49 × 10−3, card(Mh) = 87, 287, and 54,537 vertices
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Figure 17. Post-photobleaching fluorescence decay in cell compartments during optimal control iterations,
showing convergence of the numerical solution as k increases. Error bars show mean ± SD from 20 measurements
(data from [44])

parameter guesses for the gradient descent algorithm are set as ϖ0
m = 0, ϖ0

b = 2, and ϖ0
r = 0.5. A

resistance value of ε = 10−10 is imposed, and Tikhonov regularization coefficients δi = 1 are used
for all i ∈ {m, b, r}. The iterative optimal control scheme reaches convergence successfully; see
Figure 17, where arrows mark successive iterations and show the simulated fluorescence–decay
curves approaching the converged solution (solid line) as the iteration index k increases. Figure 18
displays the normalized objective (relative to its initial value) versus iteration, with an initial steep
decline and subsequent flattening, indicating convergence and stabilization of the objective value.

At convergence, the optimal control parameters are ϖ⋆
m = 2.51857, ϖ⋆

b = 2.5186, and ϖ⋆
r = 1.0452,

satisfying ϖ⋆
m/ϖ⋆

b = 1.000011912 and ϖ⋆
m/ϖ⋆

r = 2.41 (see Figure 19). This suggests that the
reporter protein diffuses at similar rates in the mother Ωm and bud Ωb, but significantly slower in
the bud-neck Ωr, in line with the experimentally supported diffusion-barrier hypothesis at the
neck [43]. Therefore, the reduced value of ϖ⋆

r slows fluorescence decay in the unbleached mother
compartment.

Using the optimal control parameters at convergence, numerical simulations of fluorescence
decay kinetics in the mother and bud domains (Figure 20) closely match experimental data,
supporting the heterogeneous-diffusion model on the ER geometry. Quantitatively, the simulated
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Figure 18. Convergence of the normalized cost function vs. optimal-control iteration number (log scale on the
y-axis)
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Figure 19. Convergence of the heterogeneous diffusion coefficients vs. optimal-control iteration number (log
scale on the x-axis) for various polynomial approximations

trajectories lie within (or very near) the mean ± SD envelopes at the reported time points in both
compartments, consistent with the small misfit values at convergence (Figure 18). Snapshots at
selected times are shown in Figure 21.

Example 6: Steady and time-dependent advection–reaction problems

This example aims to assess the applicability of the introduced weak gradient operator for solving
advection–reaction problems, with a view toward multiphase flow modeling; see Subsection 4. A
detailed theoretical analysis will be performed in a future separate work.

Steady advection–reaction problem

We begin with the steady advection–reaction problem (26). Numerical experiments are performed
in 2D with parameters f = 0, ub = 1, µ = 3, and β = (1, 0)T. The corresponding solution is
u(x) = exp(−3x).
To assess spatial accuracy, errors are measured against the exact solution on increasingly refined
meshes. We test polynomial degrees k ∈ {1, 2, 4, 6, 8} and report the error ∥u − uh∥0,Ω. Table 5
summarizes the error history and shows optimal convergence of order O(hk+1) for all various

Ωb

Ωm

time t

no
rm

al
iz

ed
in

te
ns

ity
[%

]

̟∗
m,̟∗

b ,̟
∗
r

300250200150100500

100

75

50

25

0

Figure 20. Measured vs. simulated fluorescence intensities over time in the cell compartments at convergence.
Experimental data are shown with error bars (mean ± SD, N = 20); simulated curves use the parameters
identified by the optimal control framework
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Figure 21. Snapshots showing the fluorescence decay in the endoplasmic reticulum following photobleaching
applied to the bud and using the optimal heterogeneous diffusion coefficients obtained by optimal control,
successively at times t ∈ {0, 15, 60, 105, 195, 155, 405, 720} and uh ∈ P1

d(Mh)

degrees.

Unsteady level–set problem

We consider the 3D Zalesak slotted-disk rotation benchmark with period T = 4π. The disk has
center at (0.5, 0.75, 0.5), with radius 0.15, slot of depth 0.25 and width 0.05. We prescribe the
velocity field

β(x) =
((

1
2 − y

)
/2,

(
x − 1

2

)
/2, 0

)⊤
, in Ω.

Figure 22. Snapshots of the 0-level–set isosurface Ih(ti) for the 3D Zalesak slotted-disk rotation at times ti = jπ/2
with j = 0, 1, 2, 3, 4, 5.5, 7, 8 and φh ∈ P1

d(Mh)
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Figure 23. Time history of the normalized enclosed volume of the Zalesak disk over one full rotation

A relatively coarse unstructured tetrahedral mesh of Ω is used, with average size h = 1/65. We
use a time step ∆t = π/1000. The simulation is run in parallel on 48 cores to assess accuracy
over one full rotation. We do not perform re-distancing of φ; see, e.g., [49]. Figure 22 shows the
zero level–set isosurface at selected times, indicating good volume preservation and sharp-feature
transport. Figure 23 reports the normalized volume (relative to its initial value) versus time,
showing good mass preservation with an error below 1% throughout the simulation period.

6 Conclusions

This study introduces a high-order weak discontinuous finite element approach for addressing
one-, two- and three-dimensional problems. A single stabilizer is incorporated into our definition
of the weak gradient, ensuring consistency and discrete stability and yielding a well-posed scheme.
The method demonstrates optimal convergence, with theoretical estimates provided in the norms
|||.|||ω and L2.
The method is extended to address a range of problems, starting with time-dependent hetero-
geneous diffusion and progressing to a biophysically relevant model of protein mobility in the
endoplasmic reticulum within the realistic geometry of a budding yeast cell. To showcase its versa-
tility, we also present preliminary numerical results for advection–reaction problems. Numerical
tests confirm the validity of the theoretical error analysis in 1D, 2D, and 3D settings, demonstrating
optimal error convergence rates for various unstructured quasi-uniform meshes and high-order
polynomial approximations.
The principal contributions of this work are as follows:

• We devised a weak discontinuous Galerkin scheme for elliptic problems that incorporates a
novel weak gradient operator. Theoretical analysis proves that the associated discrete bilinear
form satisfies consistency and stability, ensuring well-posedness. Error bounds are established
in various norms.

• Numerical experiments in 1D, 2D, and 3D, using high-order approximation spaces, verify the
optimal theoretical rates predicted by the analysis.

• The method extends naturally to unsteady diffusion with heterogeneous coefficients. Validation
against exact solutions demonstrates robustness, particularly in cases with strong heterogeneity
and derivative jumps.

• Within an optimal-control framework, we modeled compartmentalized diffusion in the endo-
plasmic reticulum of a budding yeast cell using data and a realistic cell geometry, capturing
mobility restrictions induced by spatially varying diffusivity.

• Within multiphase flow modeling, the discrete weak gradient operator is employed for both
steady advection–reaction and time-dependent level–set problems. Preliminary numerical
results reveal promising performance in terms of mass conservation and stability.
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7 Limitations

The proposed method is promising but was developed and analyzed primarily for second-order
elliptic problems; the advection–reaction case was illustrated only through preliminary tests. A
comprehensive extension to multiphase-flow settings remains to be carried out.
Future work will focus on extending the presented approach to nonlinear interfacial flows [52–
54], Eulerian fluid–structure interactions [55, 56], and multiphysics modeling [57, 58], areas in
which discontinuous Galerkin methods have demonstrated advantages over standard Galerkin
formulations, particularly with respect to mass conservation.
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