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1 INTRODUCTION

We consider the problem
⎧

⎪

⎨

⎪

⎩

CD�
0

(CD�
0u (�)

)

= f (�, u (�)) , � > 0, � ∈ (q − 1, q) , � ∈ (p − 1, p) , q, p ∈ ℕ,

u(j) (0) = bj ,
(CD�

0u
)(i) (0) = ci, bj , ci ∈ ℝ,

(1)

where i = 0, 1, ..., q − 1, j = 0, 1, ..., p − 1, q = − [−�] , p = − [−�] and CD�
0 is the Caputo fractional derivative (CFD)

of order � > 0 defined below. A nonexistence result of nontrivial global solutions for (1) will be shown under the condition
f (�, u (�)) ≥ �� |u (�)|m for some m > 1 and � ∈ ℝ. That is we consider the problem

⎧

⎪

⎨

⎪

⎩

CD�
0

(CD�
0u (�)

)

≥ �� |u (�)|m , � > 0, � ∈ (q − 1, q) , � ∈ (p − 1, p) , q, p ∈ ℕ,

u(j) (0) = bj ,
(CD�

0u
)(i) (0) = ci.

(2)

We seek sufficient conditions on the parameters �, m, and the initial conditions bj , ci, i = 0, 1, ..., q − 1, j = 0, 1, ..., p − 1,
q = − [−�] , p = − [−�] , so that nontrivial solutions of (2) do not exist globally.
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2. PRELIMINARIES

As, CD�
0

(CD�
0u
)

≠ CD�+�
0 u, � ∈ (q − 1, q) , � ∈ (p − 1, p), q, p ∈ ℕ, we can not generally apply the power rule here.

In case � = 1, � = 0 and f (�, u (�)) = �� [u (�)]m in (1) we obtain the problem
{

u′ (�) = �� [u (�)]m , � > 0, m > 1,
u (0) = b.

(3)

The solution of (3) is
u(�) =

[

b1−m − m − 1
1 + �

�1+�
]1∕(1−m)

, � > 0, � ≠ −1.

Notice that the solution blows-up in finite for m > 1.
In case � = � = 1, and f (�, u (�)) = [u (�)]m in (1) we obtain the problem

{

u′′ (�) = [u (�)]m ,
u (0) = b1, u′ (0) = c1.

(4)

When c1 =
√

2
√

m + 1
b(m+1)∕21 , b1 > 0, the solution of (4) is

u (�) =

(

b(1−m)∕21 − m − 1
√

2m + 2
�

)2∕(1−m)

, (5)

and it blows up when

� =

√

2m + 2
m − 1

b(1−m)∕21 , m > 1.

In15, Kassim et al. studied the problem
{ CD�

0u (�) +
CD�

0u (�) ≥ �� |u (�)|m , � > 0
u(k) (0) = bk, k = 0, 1, ..., q − 1,

(6)

where m > 1, q ≥ 1 is an integer, q − 1 < � ≤ � < q, and bk ≥ 0, k = 0, 1, ..., q − 1. They demonstrated, under sufficient5

conditions, that the problem (6) has no nontrivial global solutions when m (1 − �) − 1 < � < m − 1.
Recently, Samet showed in29 that the problem

⎧

⎪

⎨

⎪

⎩

D�
0

(

D�
0u (�)

)

≥ �� |u (�)|m , � > 0, m > 1, 0 < �, � < 1,

I1−�0

(

D�
0u (0)

)

= b2, I
1−�
0 u (0) = b1,

does not admit nontrivial global solutions when b2 > 0 and m (1 − � − �) − 1 < � < m−1, whereD�
0 is the Riemann–Liouville

fractional derivative (RLFD). In this work, we generalize the work of29 to any value of � and � using CFD instead of RLFD.
We prove here the nonexistence of nontrivial global solutions, for certain values of � and m, in an appropriate space which will
be specified later. Firstly, we establish some inequalities which will be used in our results. Obviously, sufficient conditions for10

nonexistence give necessary conditions for existence of solutions. The proof is based on the test function method and some
proper manipulations of the fractional derivatives, integrals and the arising terms along the way.
For more results regarding the problem of nonexistence of solutions for fractional differential equations, we refer

to7,10,25,31,17,18,19,24,15,9,14,29,26,1,5,27,3,4 (see also references therein).
15

In Section 2, we recall some definitions, lemmas, and prepare some material needed to prove our result. Section 3 contains
the statement and proof of our nonexistence result illustrated by some examples. Finally in section 4, we present some numerical
examples that show the blowing-up character of the solutions.

2 PRELIMINARIES

In this section, we introduce some definitions, properties, lemmas and notations used in our results. We refer the reader to16,28,30
20

for more details concerning fractional derivatives.
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2. PRELIMINARIES

Definition 1. 16 Let AC[0,∞) denote the space of absolutely continuous function on [0,∞) and ACq[0,∞), q ∈ ℕ, denote the
space of functions f which have continuous derivatives up to order q − 1 on [0,∞) such that f (q−1) ∈ AC[0,∞), where f (q−1)

denotes the derivative of order q − 1 of f.

Definition 2. 16 We denote by Lp (a, b) , p ≥ 1, the usual spaces of Lebesgue integrable functions on (a, b).25

Definition 3. 16 Let f ∈ L1 (a, b) . The integrals

I�a f (�) ∶=
1
Γ(�) ∫

�

a

f (s)
(� − s)1−�

ds, (� > a, � > 0) , (7)

and
I�b f (�) ∶=

1
Γ(�) ∫

b

�

f (s)
(s − �)1−�

ds, (� < b, � > 0) , (8)

are called the RL left-sided and RL right-sided fractional integrals of order � of the function f , respectively. When � = 0, we
set I0af = I

0
bf = f .

Definition 4. 16 The RL left-sided and RL right-sided fractional derivatives of order � ≥ 0, q = − [−�], of the function f are
defined by

D�
af (�) ∶=

( d
d�

)q
Iq−�a f (�), � > a

D�
bf (�) ∶=

(

− d
d�

)q
Iq−�b f (�), � < b,

respectively, provided that the right sides are defined almost everywhere on [a, b] .

Definition 5. 16 Let f ∈ ACq[a,∞). The expression

CD�
af (�) = I

q−�
a f (q)(�) = 1

Γ(q − �) ∫

�

a

f (q)(s)
(� − s)�+1−q

ds (� > a, 0 < � < 1) , (9)

is called left-sided CFD of order � of f .

Lemma 1. 16 If � ≥ 0 and � > 0, then

I�b (b − �)
�−1 =

Γ (�)
Γ (� + �)

(b − �)�+�−1 , � < b,

D�
b (b − �)

�−1 =
Γ (�)

Γ (� − �)
(b − �)�−�−1 , � < b.

Lemma 2. 16 Let � > 0, r ≥ 1, s ≥ 1 and 1
r
+ 1
s
≤ 1 + � (r ≠ 1 and s ≠ 1 in the case when 1

r
+ 1
s
= 1 + �). If Θ1 ∈ Lr (a, b)

and Θ2 ∈ Ls (a, b) , then

∫

b

a
Θ1 (�)

(

I�aΘ2
)

(�) d� = ∫

b

a
Θ2 (�)

(

I�b Θ1
)

(�) d�. (10)

Lemma 3. 2 Let � > 0 and q = − [−�] . If f, Iq−�b g ∈ ACq [a, b] , then
b

∫
a

g (�)CD�
af (�) d� =

b

∫
a

f (�)D�
b g (�) d� +

q−1
∑

i=0

[

f (i) (�)D�−i−1
b g (�)

]b

�=a
.

For  > 0 we define the following test function

Θ (�) =

⎧

⎪

⎨

⎪

⎩

 −� ( − �)� , 0 ≤ � ≤  , � > 0,

0, � >  .
(11)

Lemma 4. Let � > 0, q = − [−�] and Θ be as in (11) with � > � − 1. Then Iq−� Θ ∈ ACq [0, 
]

.30

Proof. By using Lemma 1, we find

Iq−� Θ (�) =  −�Iq−� ( − �)� =  −� Γ (� + 1)
Γ (� + 1 + q − �)

( − �)�+q−� , � <  .

Since � > � − 1, then Iq−� Θ ∈ ACq [0, 
]

.
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2. PRELIMINARIES

Lemma 5. Let �, � > 0, p = − [−�] and Θ be as in (11) with � > � + � − 1. Then Ip−� D�
 Θ (�) ∈ AC

p [0, 
]

.

Proof. By virtue of Lemma 1, we can write

D�
 Θ (�) =  −�D�

 ( − �)� =  −� Γ (� + 1)
Γ (� + 1 − �)

( − �)�−� ,

and

Ip−� D�
 Θ (�) =  −� Γ (� + 1)

Γ (� + 1 − �)
Ip−� ( − �)�−�

=  −� Γ (� + 1)
Γ (� − � + 1 + q − �)

( − �)�+p−�−� , � <  .

Since � > � + � − 1, then Ip−� D�
 Θ (�) ∈ AC

p [0, 
]

.

Definition 6. For � ∈ (q − 1, q) , � ∈ (p − 1, p), q, p ∈ ℕ and  > 0, we introduce the space

AC�,� [0, 
]

=
{

u ∈ ACp [0, 
]

∶ CD�
0u ∈ AC

q [0, 
]

, p ≤ q
}

.

Lemma 6. Let � > 0, q = − [−�] and Θ be as in (11) with � > � − 1. If CD�
0f ∈ AC

q [0, 
]

,  > 0, then35



∫
0

Θ (�)CD�
0

(CD�
0f (�)

)

d� =



∫
0

CD�
0f (�)D

�
 Θ (�) d�

−
q−1
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1 (CD�
0f (�)

)(i) (0) .

Proof. By Lemma 4, it is clear that Iq−� Θ ∈ ACq [0, 
]

. On the other hand, Lemma 1 and (11) imply that

D�−i−1
 Θ (�) =  −�D�−i−1

 ( − �)� =
Γ (� + 1)

Γ (� − � + i + 2)
 −� ( − �)�−�+i+1 .

Notice that

D�−i−1
 Θ (0) =

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1,

D�−i−1
 Θ ( ) = 0, i = 0, 1, ..., q − 1.

By Lemma 3 the result follows.

Lemma 7. Let �, � > 0, p = − [−�] and Θ be as in (11) with � > � + � − 1. If f ∈ ACp [0, 
]

,  > 0, then


∫
0

CD�
0f (�)D

�
 Θ (�) d� =



∫
0

f (�)D�

(

D�
 Θ (�)

)

d�

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1f (j) (0) .

Proof. Lemma 5 tells us Ip−� D�
 Θ (�) ∈ AC

p [0, 
]

. Moreover, Lemma 1 and (11) yield

D�−j−1


(

D�
 Θ (�)

)

=  −�D�−j−1


(

D�
 ( − �)�

)

=  −� Γ (� + 1)
Γ (� − � + 1)

D�−j−1
 ( − �)�−�

=  −� Γ (� + 1)
Γ (� − � − � + j + 2)

( − �)�−�−�+j+1 , � <  .

Clearly
D�−j−1



(

D�
 Θ

)

(0) =
Γ (� + 1)

Γ (� − � − � + j + 2)
 −�−�+j+1,

and
D�−j−1



(

D�
 Θ

)

( ) = 0, j = 0, 1, 2..., p − 1.
The conclusion in the lemma is a direct application of Lemmas 3 and 5.40
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Lemma 8. Let � ∈ (q − 1, q) , � ∈ (p − 1, p), q = − [−�] , p = − [−�], and Θ be as in (11) with � > � + � − 1. If f ∈
AC�,� [0, 

]

,  > 0, then


∫
0

Θ (�)CD�
0

(CD�
0f (�)

)

d� =



∫
0

f (�)D�

(

D�
 Θ (�)

)

d�

−
q−1
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1 (CD�
0f (�)

)(i) (0)

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1f (j) (0) .

Proof. The result follows from Lemmas 6 and 7.

Lemma 9. Let Θ be as in (11) with � > � + � − 1. Then

D�

(

D�
 Θ (�)

)

=  −� Γ (� + 1)
Γ (� − � − � + 1)

( − �)�−�−� , � <  .

Proof. Thanks to Lemma 1 and (11), we have

D�

(

D�
 Θ (�)

)

=  −�D�

(

D�
 ( − �)�

)

=  −� Γ (� + 1)
Γ (� − � + 1)

D�
 ( − �)�−�

=  −� Γ (� + 1)
Γ (� − � − � + 1)

( − �)�−�−� , � <  .

45

Lemma 10. Let Θ be as in (11) with � > � − 1 and �, � ≥ 0 . Then

I�
|

|

|

D�
 Θ (�)

|

|

|

=
Γ (1 + �)

Γ (� + � − � + 1)
 −� ( − �)�+�−� , � <  .

Proof. Lemma 1 allows us to write
|

|

|

D�
 Θ (�)

|

|

|

=
Γ (1 + �)

Γ (� − � + 1)
 −� ( − �)�−� , � <  ,

and

I�
|

|

|

D�
 Θ (�)

|

|

|

=
Γ (� + 1)

Γ (� − � + 1)
 −�I� ( − �)�−�

=
Γ (� + 1)

Γ (� + � − � + 1)
 −� ( − �)�+�−� , � <  .

Lemma 11. Let Θ be as in (11) with � > max {p (� − �) − 1, � − 1}, �, � ≥ 0 and p > 1. Then



∫
0

��(1−p)Θ1−p (�)
[

I�
|

|

|

D�
 Θ

|

|

|

(�)
]p
d� = C�,p

�,�,�
�(1−p)+p(�−�)+1, � (1 − p) + 1 > 0,

where
C�,p
�,�,� =

[

Γ (� + 1)
Γ (� + � − � + 1)

]p Γ (� (1 − p) + 1) Γ (p (� − �) + � + 1)
Γ (� (1 − p) + p (� − �) + � + 2)

.
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2. PRELIMINARIES

Proof. From Lemma 10 and (11), we see that

Θ1−p (�)
[

I�
|

|

|

D�
 Θ

|

|

|

(�)
]p
=

[

 −� ( − �)�
]1−p

[

Γ (� + 1)
Γ (� + � − � + 1)

]p

 −p� ( − �)p(�+�−�)

=
[

Γ (� + 1)
Γ (� + � − � + 1)

]p

 −� ( − �)p(�−�)+� , � <  .

Therefore


∫
0

��(1−p)Θ1−p (�)
[

I�
|

|

|

D�
 Θ

|

|

|

(�)
]p
d� =

[

Γ (� + 1)
Γ (� + � − � + 1)

]p

 −�

×



∫
0

��(1−p) ( − �)p(�−�)+� d�.

Let � =  s. It appears that


∫
0

��(1−p)Θ1−p (�)
[

I�
|

|

|

D�
 Θ

|

|

|

(�)
]p
d�

=
[

Γ (� + 1)
Γ (� + � − � + 1)

]p

 �(1−p)+p(�−�)+1

1

∫
0

s�(1−p) (1 − s)p(�−�)+� ds

=
[

Γ (� + 1)
Γ (� + � − � + 1)

]p Γ (� (1 − p) + 1) Γ (p (� − �) + � + 1)
Γ (� (1 − p) + p (� − �) + � + 2)

 �(1−p)+p(�−�)+1.

50

Lemma 12. Let Θ be as in (11) with � > p (� + �) − 1, �, � ≥ 0 and p > 1. Then


∫
0

��(1−p)Θ1−p (�)
[

|

|

|

D�

(

D�
 Θ

)

|

|

|

(�)
]p
d� = C�,p

�,�,�
�(1−p)−p(�+�)+1, � (1 − p) + 1 > 0,

where
C�,p
�,�,� =

[

Γ (� + 1)
Γ (� − � − � + 1)

]p Γ (� − p (� + �) + 1) Γ (� (1 − p) + 1)
Γ (� (1 − p) + � − p (� + �) + 2)

Proof. A direct consequence of Lemma 9 is

Θ1−p (�)
[

|

|

|

D�

(

D�
 Θ

)

|

|

|

(�)
]p
=

[

 −� ( − �)�
]1−p

×
[

Γ (� + 1)
Γ (� − � − � + 1)

]p

 −p� ( − �)p(�−�−�)

=
[

Γ (� + 1)
Γ (� − � − � + 1)

]p

 −� ( − �)�−p(�+�) .

Therefore


∫
0

��(1−p)Θ1−p (�)
[

|

|

|

D�

(

D�
 Θ

)

|

|

|

(�)
]p
d� =

[

Γ (� + 1)
Γ (� − � − � + 1)

]p

 −�

×



∫
0

��(1−p) ( − �)�−p(�+�) d�.

Next, the change of variable � = s yields


∫
0

��(1−p)Θ1−p (�)
[

|

|

|

D�

(

D�
 Θ

)

|

|

|

(�)
]p
d�

6



3. NONEXISTENCE OF NONTRIVIAL SOLUTIONS

=
[

Γ (� + 1)
Γ (� − � − � + 1)

]p

 �(1−p)−p(�+�)+1

1

∫
0

s�(1−p) (1 − s)�−p(�+�) ds

=
[

Γ (� + 1)
Γ (� − � − � + 1)

]p Γ (� (1 − p) + 1) Γ (� − p (� + �) + 1)
Γ (� (1 − p) + � − p (� + �) + 2)

 �(1−p)−p(�+�)+1.

Lemma 13. Let Θ be as in (11) with � > p� − 1, � > 0 and p > 1. Then



∫
0

��(1−p)Θ1−p (�) ||
|

D�
 Θ (�)

|

|

|

p
d� = C�,p

�,�
�(1−p)−p�+1, � (1 − p) + 1 > 0,

where
C�,p
�,� =

[

Γ (1 + �)
Γ (� − � + 1)

]p Γ (� − p� + 1) Γ (� (1 − p) + 1)
Γ (� (1 − p) + � − p� + 2)

.

Proof. This is an immediate consequence of Lemma 1 and a similar change of variable as in the above lemmas.

Remark 1. If m, m′ > 1 and 1
m
+ 1
m′

= 1, then m
′

m
= m′ − 1, m′ = m

m − 1
and m(� − 1) + 1 > 0⇐⇒ m′� > 1, for � > 0.55

3 NONEXISTENCE OF NONTRIVIAL SOLUTIONS

In this section we will demonstrate our result.

Theorem 1. Suppose that
q − � − (� + q − 1)m − 1 < � < m − 1, m > 1, cq−1 > 0.

Then, Problem (2) has no nontrivial global solution in AC�,�[0,∞).

Proof. We argue by contradiction. Assume that nontrivial solution u exists for all time � > 0. Let Θ be as in (11) with � >
m

m − 1
(� + �) − 1. Multiplying both sides of the inequality in (2) by Θ and integrating over [0,  ], we get

I =



∫
0

Θ (�) �� |u (�)|m d� ≤



∫
0

Θ (�)CD�
0

(CD�
0u (�)

)

d� (12)

According to Lemma 8, it is obvious that


∫
0

Θ (�)CD�
0

(CD�
0u (�)

)

d� =



∫
0

u (�)D�

(

D�
 Θ (�)

)

d�

−
q−1
∑

i=0

Γ (� + 1)
Γ (� − � + 2 + i)

 i+1−� (CD�
0u (�)

)(i) (0)

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + 2 + j)

 −�−�+j+1u(j) (0)

=



∫
0

u (�)D�

(

D�
 Θ (�)

)

d� −
q−1
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1ci

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1bj . (13)

7



3. NONEXISTENCE OF NONTRIVIAL SOLUTIONS

and hence60

I =



∫
0

Θ (�) �� |u (�)|m ≤



∫
0

u (�)D�

(

D�
 Θ (�)

)

d� −
q−1
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1ci

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1bj ,

or

I +
Γ (1 + �)

Γ (� − � + q + 1)
 q−�cq−1 ≤



∫
0

u (�)D�

(

D�
 Θ (�)

)

d�

−
q−2
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1ci

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1bj . (14)

Next, we insert Θ1∕m (�) ��∕mΘ−1∕m (�) �−�∕m inside the integral of (14) and using Young’s inequality, we obtain

I +
Γ (� + 1)

Γ (� − � + q + 1)
 q−�cq−1 ≤ 1

m



∫
0

��Θ (�) |u (�)|m d�

+ 1
m′



∫
0

Θ−m′∕m (�) �−�m′∕m ||
|

D�

(

D�
 Θ (�)

)

|

|

|

m′
d�

−
q−2
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1ci

−
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1bj ,

or

1
m′
I +

Γ (� + 1)
Γ (� − � + q + 1)

 q−�cq−1 ≤
1
m′



∫
0

Θ−m′∕m�−�m′∕m ||
|

D�

(

D�
 Θ (�)

)

|

|

|

m′
d�

−
q−2
∑

i=0

Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1ci −
p−1
∑

j=0

Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1bj . (15)

The integral term in (15) may be evaluated by Lemma 12
m′Γ (� + 1)

Γ (� − � + q + 1)
 q−�cq−1 ≤ C�,m′

�,�,�
�(1−m′)−(�+�)m′+1

−
q−2
∑

i=0

m′Γ (� + 1)
Γ (� − � + i + 2)

 −�+i+1ci −
p−1
∑

j=0

m′Γ (� + 1)
Γ (� − � − � + j + 2)

 −�−�+j+1bj . (16)

From (16), we deduce that
m′Γ (� + 1)

Γ (� − � + q + 1)
cq−1 ≤ C�,m′

�,�,�
�−q+�(1−m′)−(�+�)m′+1

−
q−2
∑

i=0

m′Γ (� + 1)
Γ (� − � + i + 2)

 −q+i+1ci −
p−1
∑

j=0

m′Γ (� + 1)
Γ (� − � − � + j + 2)

 −q−�+j+1bj .

If � > q − � − (q + � − 1)m − 1 we see that � − q + �
(

1 − m′
)

− (� + �)m′ + 1 < 0, and consequently  �−q+�(1−m′)−(�+�)m′+1,
 −q+i+1,  −q−�+j+1 → 0 as  →∞. Therefore

cq−1 ≤ 0.
We reach a contradiction since cq−1 > 0.
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4. EXAMPLES
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0.0 0.5 1.0 1.5
0

50

100

150

200

τ

u(
τ
)

(a)

γ=0.5

m=2

b1=1

b2=1

numerical

n=2

n=4

n=6

0.0 0.5 1.0 1.5 2.0

0

50

100
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200

τ

u(
τ
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(b)

Figure 1 A plot of the numerical solution (black-line) of u′′(�) = � |u(�)|m is shown and compared to different iterations
(n = 2, 4, 6) using Eq. (17).  is taken to be −0.5 and 0.5 in panel (a) and (b), respectively. The initial conditions are taken to be
u(0) = b1 and u′(0) = b2, both specified in the figure.

4 EXAMPLES

The problem (2) is equivalent to the Volterra integral inequality

u (�) ≥
p−1
∑

k=0

bk
k!
�k +

q−1
∑

k=0

ck
k!
�k + I�+�

(

�� |u (�)|m
)

.

To study the behavior of the solution u(�) numerically, we will use the iterative scheme where the above inequality can be
written as

u(n) (�) =
p−1
∑

k=0

bk
k!
�k +

q−1
∑

k=0

ck
k!
�k + I�+�

(

�� ||
|

u(n−1) (�)||
|

m)
, (17)

where n = 1, 2, ..., represents the number of iterations starting with the initial guess u0 = 1.65

Using Eq. (17), we study some special cases by assuming different � and � in every case. We note here that q = − [−�] ,
p = − [−�].
First, let us start by the simplest case when � = � = 1. In this case, the differential equation is ordinary and its solution could

be found numerically using any numerical software. In Eq. (5), the analytical solution, which blows-up at finite �, is presented
when � = 0. In this example, we find the numerical solution of this differential equation using m = 2 and � ≠ 0. Then, compare70

it to the solutions obtained from Eq. (17) after n = 2, 4, 6 iterations as shown in Fig. 1. As can be seen from this figure, the
agreement to the numerical solution increases by increasing the number of iterations n. This comparison shows that qualitative
agreement to the solution could be achieved using a small number of iterations. We will use this argument later when � and �
are fractions.
Next, we consider solutions of problem (2) using Eq. (17) with different � and � fractional orders. In Fig. 2, we plot the75

solution u(�) in three cases: 0 < �, � < 1 (top panel), 1 < � < 2 and 0 < � < 1 (middle panel), and 1 < �, � < 2 (bottom panel).
The number of iterations is taken to be n = 3 and n = 4 in the left and right columns, respectively. Here we stopped at n = 4
due the complexity of the solution at large n and due to the fact that more iterations just result in more powers of � making the
blowing more faster. Even with n = 4, the blowing-up character of the solutions is shown at finite � as can be seen from Fig. 2.
In all cases considered above, the solutions showed a blowing-up character for different parameters. This support the finding80

of this work where nontrivial global solutions of problem (2) do not exist as discussed in section 3.
In perspective, we aim to extend our theoretical work by exploring other types of fractional differential equations, in addition

to conducting numerical analysis and simulations.8,23,22,21,20.
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Figure 2 Numerical solutions of Eq. (17) are shown with different � and � orders. In the top panel, � and � are taken to be
between 0 and 1, in the middle panel we consider 1 < � < 2 and 0 < � < 1, and finally in the bottom panel, 1 < �, � < 2 are
considered. The number of iterations is taken to be n = 3 and n = 4 in the left and right columns, respectively.

ACKNOWLEDGEMENTS

The authors are grateful for the support provided by Imam Abdulrahman Bin Faisal University and King Fahd University85

of Petroleum and Minerals, through Project No. SB191023. A.L. gratefully acknowledges the financial support by Khalifa
University through the grant FSU-2021-027.

10



REFERENCES REFERENCES

References

1. B. Ahmad , A. Alsaedi A and M. Kirane, Blowing-up Solutions of Distributed Fractional Differential Systems, Chaos
Solitons Fractals, 145 (2021), 110747.90

2. O. P. Agarwal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor. 40 (2007),
6287–6303.

3. R. P. Agarwal, M. Jleli M and B. Samet, Nonexistence of global solutions for a time-fractional damped wave equation in a
k-times halved space, Comput. Math. with Appl. 78 (2019), 1608–1620.

4. A. Alqahtani, M. Jleli and B. Samet, Nonexistence of nontrivial global solutions for nonlocal in time differential inequalities,95

Math. Methods Appl. Sci. 42 (2019):861–870.

5. A. Alsaedi, B. Ahmad, M. Kirane and B. T. Torebek, Blowing-up solutions of the time-fractional dispersive equations, Adv.
Nonlinear Anal. 10 (2021), 952–971.

6. K. M. Furati, M. D. Kassim and N.-E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative,
Comput. Math. Appl., 64 (2012), 1616–1626.100

7. K. M. Furati, M. D. Kassim and N.-E. Tatar, Non-existence of global solutions for a differential equation involving Hilfer
fractional derivative, Electron. J. Diff. Equ., vol 2013, no. 235, (2013), 1–10.

8. A. Gizzi; R. Ruiz-Baier; S. Rossi; A. Laadhari; C. Cherubini; S. Filippi. A three-dimensional continuum model of active
contraction in single cardiomyocytes. In Modeling the Heart and the Circulatory System; Springer International Publishing:
Cham, Switzerland, (2015), 157–176.105

9. M. Jleli and B. Samet, Nonexistence results for some classes of nonlinear fractional differential inequalities, J. Funct. Spaces,
2020 (2020), 1–8.

10. M. D. Kassim, K. M. Furati and N.-E. Tatar, On a differential equation involving Hilfer-Hadamard fractional derivative,
Abstr. Appl. Anal., vol. 2012, Article ID 391062, 17 pages, 2012.

11. M. D. Kassim and N.-E. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional110

derivative, Abstr. Appl. Anal., vol. 2013, Article ID 605029, 12 pages, 2013.

12. M. Kassim, K. Furati and N.-E. Tatar, Asymptotic behavior of solutions to nonlinear fractional differential equations, Math.
Model Anal., 21:5 (2016), 610–629.

13. M.D. Kassim, K.M. Furati andN.-E. Tatar, Asymptotic behavior of solutions to nonlinear initial-value fractional differential
problems, Electron. J. Differ. Equ. 2016 (291), 1–14.115

14. M. D. Kassim, K. M. Furati and N.-E. Tatar, Non-existence for fractionally damped fractional differential problems, Acta
Math. Sc., vol. 37 (2017), 119–130.

15. M. D. Kassim, K. M. Furati and N.-E. Tatar, Nonexistence of global solutions for a fractional differential problem, Journal
of Computational and Applied Mathematics, vol. 314 (2017), 61–68.

16. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of120

North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006, Edited by Jan van Mill.

17. M. Kirane, M. Medved and N. E. Tatar, On the nonexistence of blowing-up solutions to a fractional functional differential
equations, Georgian J. Math. 19 (2012), 127–144.

18. M. Kirane and N.-E. Tatar, Nonexistence of solutions to a hyperbolic equation with a time fractional damping, Z. Anal.
Anwendungen 25 (2006), 131–142.125

19. M. Kirane and N.-E. Tatar, Absence of local and global solutions to an elliptic system with time-fractional dynamical
boundary conditions, Siberian J. Math. 48 (3) (2007), 477–488.

11



REFERENCES REFERENCES

20. A. Laadhari, An operator splitting strategy for fluid-structure interaction problems with thin elastic structures in an
incompressible Newtonian flow, Appl. Math. Lett. 81 (2018), 35–43.

21. A. Laadhari, Implicit finite element methodology for the numerical modeling of incompressible two-fluid flowswith moving130

hyperelastic interface, Appl. Math. Comput. 333 (2018), 376–400.

22. A. Laadhari, G. Székely, Fully implicit finite element method for the modeling of free surface flows with surface tension
effect, Int. J. Numer. Methods Eng. 111 (2017), 1047–1074.

23. A. Laadhari, P. Saramito, C. Misbah, G. Székely, Fully implicit methodology for the dynamics of biomembranes and
capillary interfaces by combining the level set and Newton methods, J. Comput. Phys. 343 (2017), 271–299.135

24. M. Kirane, Y. Laskri and N.-E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with
spatio-temporal fractional derivatives, J. Math. Anal. Appl. 312 (2) (2005), 488–501.

25. Y. Laskri, N.-e. Tatar; The critical exponent for an ordinary fractional differential problem, Comput.Math. Appl., 59, (2010),
1266–1270.

26. E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions to non-linear partial differential equations and140

inequalities, Proc. Steklov Inst. Math. 234 (2001), 3–383.

27. A. Nabti, A. Alsaedi, M. Kirane and B. Ahmad B, Nonexistence of global solutions of fractional diffusion equation with
time-space nonlocal source, Adv. Differ. Equ. 2020 (2020), 1–10.

28. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to
methods of their solution and some of their applications. Vol. 198. Elsevier, 1998.145

29. B. Samet, Nonexistence of global solutions for a class of sequential fractional differential inequalities, Eur Phys J Spec Top,
226 (2017), 3513–3524.

30. S. G. Samko, A. A. Kilbas and O. I. Marichev, ”Fractional Integrals and Derivatives: Theory and Applications”, Gordon
and Breach, Switzerland, 1993.

31. N.-E. Tatar, Nonexistence results for a fractional problem arising in thermal diffusion in fractal media, Chaos Solitons150

Fractals, 36 (2008), 1205–1214.

How to cite this article:M.D. Kassim,M. Alqahtani, N.-E. Tatar, A. Laadhari, Non-existence Results for a Sequential Fractional
Differential Problem, Math Methods Appl Sci, sumitted.

12


	Non-existence Results for a Sequential Fractional Differential Problem 
	Abstract
	 Introduction
	Preliminaries
	Nonexistence of nontrivial solutions
	Examples
	Acknowledgements
	References


