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Abstract: In this article, we present a finite element method for studying the dynamic behavior
of deformable vesicles, which mimic red blood cells, in a non-Newtonian Casson fluid. The fluid
membrane, represented by an implicit level-set function, adheres to the Canham–Helfrich model and
maintains surface inextensibility constraint through penalty. We propose a two-step time integration
scheme that incorporates higher-order accuracy by using an asymmetric composition of discrete
flow based on the second-order backward difference formula, followed by a projection onto the
real axis. Our framework incorporates variable time steps generated by an appropriate adaptation
criterion. We validate our model through numerical simulations against existing experimental and
numerical results in the case of purely Newtonian flow. Furthermore, we provide preliminary results
demonstrating the influence of the non-Newtonian fluid model on membrane regimes.

Keywords: error estimation; composition method; numerical integration; high-order scheme; finite
element method; red blood cell

1. Introduction

Red blood cells (RBCs) are the primary cellular component of blood flow and play
a crucial role in delivering oxygen to the body. RBCs exhibit remarkable deformability,
enabling them to traverse small capillaries without rupture under high hydrodynamic
stress. The dynamics of RBCs and their interactions with other blood components give
rise to non-Newtonian hemorheology, particularly in small vessels and damaged blood
vessels [1]. While blood can be approximated as Newtonian in large arteries with high
shear rates (that is, the shear stress is proportional to the shear rate) [2], it exhibits complex
non-Newtonian characteristics (e.g., shear thinning, thixotropy, yield stress, etc.) in small-
diameter arteries such as capillaries and tiny arterioles [3–6]. The intricate interactions of its
cellular constituents lead to significant non-Newtonian differences in its hemorheological
properties, which have been extensively studied experimentally and theoretically. At
low shear rates, several experimental studies have been conducted, such as the one by
Cokelet in 1963 [7]. Mathematical modeling of the spatio-temporal behavior of individual
RBCs is an exciting and dynamic field of research. Through modeling, we aim to gain
a better understanding of the complex patterns exhibited by RBCs at the microscopic
scale. Despite significant progress, the behavior of RBCs remains non-trivial, and many
challenges persist [8–10].

We focus on performing numerical simulations of a coupled system that models the
interaction between an individual RBC’s deformation and hydrodynamics using a realistic
rheological model for blood at the RBC level. This modeling approach has significant
importance and potential in several biomedical and therapeutic applications, such as the
delivery of drugs, the treatment of cancer [11,12], and the production of biomolecules [13].
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While there is growing interest in biomedical applications from the perspective of
scientific computing and numerical modeling, most contributions in this field are focused
on studying the dynamics of lipid vesicles in a purely Newtonian fluid. Vesicles are giant
biomimetic unilamellar liposomes lacking a submembrane cytoskeleton and are commonly
used as an instrumental model to study the behavior of RBCs in laboratory settings.

The mechanical properties of vesicles play a crucial role in their ability to withstand
strong stresses and large deformations in flow, resulting in a wide variety of static and
dynamic behaviors [14,15]. In the 1970s, Helfrich introduced a model for biomembranes
where the mechanical properties are the result of bending energy minimization under
constraints, also known as the Canham–Helfrich energy [16–18]. The bending energy
density depends on the mean square curvature of the membrane. The bending force
involves fourth-order derivative calculations of a shape function, which makes the problem
numerically stiff and can result in several numerical difficulties [19–22].

In multiphysics modeling, there are two families of numerical strategies used for
representing interfaces. Interface tracking techniques require moving meshes to track
interface deformations, while interface capturing methods use fixed meshes and introduce
an additional equation to implicitly track the interface [23].

The classical Galerkin finite element method [24], the boundary element method [25–27],
the penalty-immersed boundary method [28], and the parametric finite element method [9,29]
are examples of interface tracking techniques. On the other hand, the level-set method [22,30–34],
the phase-field method [35,36], and the combined level-set and phase-field methods [37]
are examples of interface capturing methods.

In this work, we use the level-set method because of the large deformations of the
membrane. The level-set method has been proven effective for capturing the complex
dynamics of interfaces with large deformations and topological changes [38–41].

At the microscopic scale, blood flow is characterized by the presence of aggregates
of red blood cells that have a finite yield stress corresponding to a plastic solid behavior;
it therefore cannot be modeled as a homogeneous Newtonian flow. Several studies have
focused on the study of the non-Newtonian behavior of blood; see, for example, [42–45].
Numerous experimental studies have been performed on blood flow with different hema-
tocrits, anticoagulants, and temperatures [46,47]. They have demonstrated that blood
exhibits a finite yield strength in small vessels, owing to coagulation phenomena and the
collective interactions of its components. To describe this behavior, Casson’s model has
proven effective in fine-tuning experimental measurements over a range of blood vessel
diameters, hematocrit levels, and shear rates [48]. We also refer to the discussion on the
choice of Casson’s model for blood flow in [5]. Casson’s model expresses shear stress
with respect to shear rate and a minimum yield stress [49]; see Cokelet’s work [7] for a
comprehensive study. In this work, we have adopted the Casson constitutive model to
describe the non-Newtonian behavior of blood at the RBC level.

As a result, blood behaves as an elastic solid at zero shear rate, when the shear stress
decreases beneath the yield stress value. We often observe a change in behavior once the
minimum yield limit of the fluid is exceeded [50]. However, dealing with the discontinuity
of stress at a zero strain rate presents significant computational challenges. To address
this challenge, various approaches have been introduced, with regularization techniques
being a commonly used method. These techniques involve multiplying the stress by an
exponential term [51–53] or simply regularizing the discontinuity at zero strain [54] in
order to remove the singularity.

Given a system of differential equations obtained, for example, by finite element
discretization, numerical integration using composition methods has emerged as a powerful
tool for raising the order of a given lower-order basic integrator (i.e., first-order backward
Euler scheme or second-order midpoint scheme) [55]. Here we introduce a technique for
composing a second-order backward difference scheme, referred to as BDF-2, to increase
the approximation order. This technique has been widely developed for one-step methods.
For example, the Stromer–Verlet method [56], which is a symmetric and symplectic scheme
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used in the simulation of the Hamiltonian system [57], is the result of the composition
of two schemes with a half time step: the symplectic Euler scheme (also known as the
Euler–Cromer rule) [58] and its adjoint (i.e., its inverse discrete flow using a negative
time step). In general, for a numerical scheme and a given time step, the composition
strategy is based on multiple composition of basic numerical flows using substeps of the
original time step. A theoretical framework for composition methods applied to arbitrary
symmetric basic integrators was developed [59]. Various works have been carried out to
build a symmetric, symplectic [59], or pseudo-numerical flow from the composition of
basic discrete flows [60,61] and to increase the order of the scheme [62]. Recently, complex
coefficients have been used for the composition and construction of pseudo-symplectic and
pseudo-symmetric flows [63]. In particular, a time-symmetric method corresponds to its
own adjoint, which represents the inverse map of the original flow with opposite time step.
Symmetric methods necessarily have even orders. The composition of multi-step methods
into cyclic pathways [64] has been used to improve their stability domain. This technique
has been applied to solve systems, such as in electromagnetics [65], in quantum mechanics
for Klein–Gordon networks [66,67], in astronomy [68], in electric and chaotic systems [69],
etc. We also refer the reader to [55,62,70,71].

Furthermore, adapted time-stepping strategies can be extremely useful to better follow
the dynamics of highly deformable interfaces [72,73]. The adpted step sizes can be calcu-
lated if an appropriate local error estimate is available. This could be done by considering
a composition method involving complex coefficients, so that the imaginary part of the
output represents an error estimate of the numerical approximation. The strategy of taking
into account complex coefficients in the composition technique has been used in [63] to
produce pseudo-symmetric and symplectic schemes. Recently, an error estimation of the
composed Cranck–Nikolson scheme has been proposed based on the imaginary part of the
composed discrete flux using complex coefficients.

For multi-step methods, the technique is more technical. Multi-step composed
methods in cyclic pathways were first developed in the 1980s to improve their stabil-
ity domain [64]. In this work, we develop the composition technique of the BDF-2 scheme
to increase the approximation order of integration in time. Indeed, the method consists of
calculating, by using the last two approximations, an intermediate value by manipulating
the coefficients associated with the BDF-2 scheme. This last intermediate value is then used
with the last two solutions to predict an approximation such that the new coefficients verify
third-order convergence conditions. This technique will allow us to adapt the time step
based on the corresponding error estimate.

The paper is organized as follows. Section 2 presents the mathematical model and
describes briefly the different subproblems for a vesicle immersed in a Casson fluid. Section 3
is devoted to the time discretization and the composition technique. The numerical method is
presented in Section 4. In Section 5, several numerical simulations are provided in Newtonian
and non-Newtonian cases, providing better information on the accuracy of the method. We
close with some conclusions and possible extensions in Section 6.

2. Mathematical Framework

The spatio-temporal deformations of the vesicle are driven by the bending force, ac-
tions of fluid forces and boundary conditions, requiring the balance equations of mass and
momentum. The fluid-membrane coupling is described through the balance of hydrody-
namic stress by the bending response of the membrane. The level-set description of the
membrane obeys a Hamilton–Jacobi equation.

2.1. Preliminaries

By Λ ⊂ R2, we denote a given open-bounded domain with polyhedral boundary ∂Λ
and denote by ν the outward unit normal vector on ∂Λ. Usual notation will be adopted
for Lebesgue spaces Lp(Ω) and Sobolev spaces Hs(Ω) with norm ‖·‖s,Ω. For a time period
T > 0 and for any time t ∈ (0, T), let Γ(t) = ∂Ω(t) represent a vesicle immersed in the
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domain Λ so that Γ(t) ∩ ∂Λ = ∅; Ω(t) is the inner fluid domain, while Λ ∈ R2 is the
exteracellular domain. In the following, the dependence of the shape on time is omitted to
lighten the notations. Let n and H be the unit outward normal vector and mean curvature
defined for Γ, respectively. See the schematic representation in Figure 1. As usual, I stands
for the 2× 2 identity tensor.

Figure 1. (Left) Simulation setup of a vesicle Γ = Γ(t) with enclosed fluid domain Ω = Ω(t) immersed
in an incompressible non-Newtonian fluid domain Λ \Ω(t) under simple shear flow conditions. A
band of regularization along the circumference of the vesicle is of width 2ε. (Right) Cross-section of Γ
representing a regularized sharp function η across the membrane.

2.2. Membrane Model

Consider a vesicle freely suspended in flow. It represents a two-dimensional inextensi-
ble fluidic membrane made of two monolayers of phospholipidic molecules. To describe
the mechanical properties of lipid vesicles and also provide insight into the biconcave
shapes of RBCs, Canham [17], Helfrich [16], and Evans [74] independently introduced a
geometric model in the early 1970s, in which the mechanical response is driven by the
minimization of a bending energy density dependent on the mean squared curvature.
Given a geometrical form Ω in two-dimensional space, the energy functional is given by:

E(Ω) =
k
2

∫
∂Ω

H2 ds, (1)

where k is the bending rigidity modulus. The contribution of the Gaussian curvature is not
relevant, if one is not interested in the change of topology; this is the case for RBCs.

We first adopt the limit of full incompressibility for both inner and outer fluids. In
addition, the membrane is characterized by its local inextensibility, which forces the surface
velocity divergence to vanish on the membrane. This allows it to resist stretching and leads
to the preservation of the vesicle’s perimeter (or area in 3D) [75].

From a numerical point of view, the local inextensibility is generally imposed by an
exact local Lagrange multiplier acting as a position-dependent membrane tension [76] or by
the minimization of an elastic energy, depending on the stretching [30]. The corresponding
elastic force is strongly nonlinear, which can be a source of numerical instability. As a result,
fluid incompressibility and membrane inextensibility result in the preservation of global
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area and perimeter in 2D (or volume and surface in the 3D case). Let u be the fluid velocity.
The inextensibility constraint reads:

divs u = 0, (0, T)× Γ, (2)

where divs is the surface divergence operator defined through the normal n on the mem-
brane. Given the generic functions f and v, the surface gradient ∇s, the surface divergence
divs, and the Laplace–Beltrami operators ∆s, we write:

∇s f = (I − n⊗ n)∇ f ,
divs v = (I − n⊗ n) : ∇v,
∆s f = divs(∇s f ).

Here, the crossed circle ⊗ represents the tensor product operator, while the semicolon :
stands for the tensor contraction operator.

Based on shape optimization techniques [20], the bending force is given in the two-
dimensional case by:

F = k
(

∆sH +
H3

2

)
n, on (0, T)× Γ.

Considering the balance of surface forces and hydrodynamic stresses acting on the
vesicle, the fluid/vesicle coupling is described by the jump of the normal Cauchy stress
σtot [76]. The bending force is then transformed into a forcing surface term in the momen-
tum equation:

[[σtotn]] = ∇sλ− λHn + k
(

∆s H +
H3

2

)
n on (0, T)× Γ,

where λ stands for a local Lagrange multiplier associated with the inextensibility con-
straint (2).

2.3. Interface Tracking: Level-Set Representation

We use a level-set representation to follow the deformations of the vesicle Γ(t), de-
scribed in an implicit way as a zero level-set of a function ϕ:

Γ(t) =
{

x ∈ Λ; ϕ(t, x) = 0
}

. (3)

The function ϕ is initialized with a signed distance ϕ0(x):

ϕ0(x) =


inf

y∈Γ(0)
‖y− x‖, if x /∈ Ω(0)

− inf
y∈Γ(0)

‖y− x‖, otherwise.

All geometric fields are written in terms of ϕ and are extended to the entire domain
Λ. In particular, n = ∇ϕ/|∇ϕ| and H = div n. The property of signed distance is lost by
advection. To restitute the signed distance property, which is important for avoiding numer-
ical instabilities resulting from very small or very high level-set gradients, a redistancing
problem is commonly solved on a regular basis.

Surface integrals over Γ are approximated as integrals over Λ. Set a small regulariza-
tion parameter ε > 0 proportional to the mesh size. We introduce regularized Heaviside
Hε and Dirac δε functions as follows:



Symmetry 2023, 15, 1138 6 of 33

Hε(ϕ) =



0, if ϕ < −ε

1
2

1 +
ϕ

ε
+

sin
(πϕ

ε

)
π

, if |ϕ| 6 ε

1, otherwise

,

δε(ϕ) =
dHε

dϕ
(ϕ) =


1
2ε

(
1 + cos

(πϕ

ε

))
, if |ϕ| 6 ε

0, otherwise
.

For a function f and its extension f̃ on Λ, surface integrals are approximated as follows:∫
Γ

f (x) ds ≈
∫

Λ
|∇ϕ| δε(ϕ) f̃ (x)dx. (4)

The membrane force requires an evaluation of the fourth-order derivative of ϕ, which
leads to a stiff problem with strong restrictions on the time step required for stability [33,76].

2.4. Non-Newtonian Fluid Model

Let u and p be the fluid velocity and pressure, respectively. Let |τ| =
(

1
2 τ : τ

)1/2
,

with τ ∈ R2×2 denoting the Euclidean norms of tensors. Let the positive constant σ0 be the
yield stress. The membrane is suspended in an incompressible non-Newtonian fluid, where
the constitutive law is given by the Casson model and expresses the Cauchy stress tensor
σtot with respect to the the symmetric part of the velocity gradient (rate of deformation),

D(u) =
1
2

(
∇u +∇uT

)
,

as follows:
σtot = σ − pI.

Here, σ stands for the stress deviator tensor. Let η(.) be the non-Newtonian
viscosity function: σ = 2η(|D(u)|)D(u) =

(√
K +

√
σ0

|D(u)|

)2
D(u), when |D(u)| 6= 0,

|σ| < σ0, when |D(u)| = 0,
. (5)

Here, Casson’s viscosity constant K corresponds to the fluid viscosity in the Newtonian
case, that is, when the yield stress equals zero. Indeed, σ0 = 0 reduces the constitutive
equation to the Navier–Stokes case with a symmetric Cauchy stress and proportionality
constant given by the constant K. Note that the stress is undetermined when D(u) = 0,
while we only know that it is less than the yield stress value. The viscosity function
decreases as the shear rate increases.

According to [50], the reported yield stress values vary between 0.0002 and 0.04 Pa,
while the Casson viscosity constant is K ≈ 0.56 Pa·s [77]. The relation (5) is not defined
when the shear rate vanishes, and one proceeds by regularization with a small positive
parameter ξ. The limiting case ξ → 0 allows us to retrieve Casson’s original model; see,
for example, [52,78]. By analogy with the Newtonian case, we consider different Casson’s
viscosity constants of the internal and external fluids, referred to as Ki and Ko, respectively.
Accordingly, the problem is modified in order to go back to standard equations, where the
fluid behaves as a quasi-Newtonian fluid. That allows the use of standard solvers. The
deviator stress in (5) writes:

σ = 2η∗(|D(u)|)D(u),
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with a viscosity function:

η∗(D(u)) =


1
2

(√
Ki +

√
σ0

|D(u)|+ ξ

)2
, in Ω,

1
2

(√
Ko +

√
σ0

|D(u)|+ ξ

)2
, otherwise .

. (6)

To remedy the discontinuity of the viscosity accross the membrane in (6), the sharp
viscosity is replaced by a smooth function:

η∗ε (D(u), ϕ) =
1
2

(√
KoHε(ϕ) +

√
Ki(1−Hε(ϕ)) +

√
σ0

|D(u)|+ ξ

)2
, in Λ. (7)

That results in a symmetric and regularized Cauchy stress tensor.

Dimensionless Nonlinear Coupled Problem

Assume a constant piecewise fluid density equal to ρi and ρo in the intracellular and
extracellular domains, respectively. Consider a vesicle in simple shear flow as depicted
in Figure 1. Opposite constant velocities u = (±Vb, 0) are imposed on the horizontal
boundaries ΣD, while stress-free boundary conditions are imposed elsewhere. Let Σ−
denote the inflow domain. Admissible velocities belong to:

V(Vb) =

{
v ∈

(
H1(Λ)

)2
s.t. v = (Vb, 0)T on ΣD

}
.

To write the dimensionless problem, we introduce some dimensionless parameters
of hemodynamical relevance. Given ϕ0, the vesicle initially has a perimeter of |Γ(0)|. Set
R0 = |Γ(0)|/2π as the radius of a circle having the same circumference as the membrane.
The confinement of the vesicle in Λ is denoted by the dimensionless parameter α = R0/L.
To normalize the problem, we consider the characteristic length αx = L/α, the characteristic
velocity αu = αVb, the characteristic time αt = αx/αu, and the characteristic pressure
αp = R2

0K0Vv/L3. We choose ρo and Ko in the extracellular domain as characteristic density
and viscosity, respectively.

We end up with a set of dimensionless physical parameters. The Reynolds number
Re assesses inertial forces with respect to viscous forces. The bending capillary number
Ca compares the force of the imposed flow to the membrane bending strength. Bingham’s
number measures the effect of the yield stress against the rate of fluid strain. The viscosity
contrast β = Ki/Ko compares the intracellular viscosity to the extracellular viscosity in
the Newtonian case. The same is true for the density contrast ρi/ρo. Without loss of
generality, we assume similar intra- and extracellular densities as usual ρi/ρo ≈ 1, since
this parameter is known not to have an effect on the vesicle dynamics. Finally, a parameter
of great importance is the reduced area; it represents the deflation of the cell which is the
ratio between the enclosed area and the area of a circle having the same perimeter. The
dimensionless parameters of the problem are:

Re =
ρoLVb

Ko
, Ca =

k Ko L3 Vb
R0

, Bn =
σ0L3

KoR2
0Vb

,

Ξ2D =
|Ω|
π
×
(

2π

|Γ|

)2
, α =

Ro

L
, β =

Ki
Ko

.

We also refer to the work of Laadhari et al. [31,76] for a detailed description of the
dimensionless problem and for obtaining the dimensionless physical parameters in the
Newtonian case. In the following, all quantities are dimensionless, while the same previous
notation is used. The regularization parameter is always denoted by ξ. The normalized
problem is written as:
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find ϕ, u, p, and λ such that

∂ϕ

∂t
+ u.∇ϕ = 0 in (0, T)×Λ (8a)

Re
(

∂u
∂t

+ u.∇u
)
− div(2η∗ε (D(u), ϕ)D(u)) +∇p = 0 in (0, T)× (Λ\Γ) (8b)

div u = 0 in (0, T)×Λ (8c)

divs u = 0 on (0, T)× Γ (8d)

[[u]] = 0 on (0, T)× Γ (8e)

− 1
Ca

{
∆sH +

H3

2

}
n

+H λ n−∇sλ + [[2η∗ε (D(u), ϕ)D(u)− pI]].n = 0 on (0, T)× Γ (8f)

ϕ = ϕb on (0, T)× Σ− (8g)

u = ub on (0, T)× ΣD (8h)

(2η∗ε (D(u), ϕ)D(u)− pI).ν = 0 on (0, T)× ∂Λ\ΣD (8i)

ϕ(0) = ϕ0 in Λ (8j)

u(0) = u0 in Λ. (8k)

The normalized smooth viscosity function is:

η∗ε (D(u), ϕ) =
1
2

(
Hε(ϕ) +

√
β(1−Hε(ϕ)) +

√
Bn

|D(u)|+ ξ

)2

, in Λ. (9)

3. Composition Technique Applied to the Second-Order BDF Scheme

In this section, we focus on the construction of a higher-order scheme by double
composition of the second-order BDF scheme. Let us simply note the differential system
obtained by finite element discretization by the following initial value problem:

dy
dt

= f (t, y), y(0) = y0, t > 0. (10)

For time interval [0, T], we consider a partition into N sub-intervals [tn, tn+1), n =
0, . . . , N − 1 of step size ∆t. For all n > 1, the unknowns yn approach the true solution y(t)
at discrete time steps tn and are calculated by induction. Given a numerical scheme and
n > 1, let Υ be the numerical flow such that:

yn = Υ∆t(yn−1), and Υ∆t ◦ . . . ◦ Υ∆t(y0)︸ ︷︷ ︸
n times

= yn.

The numerical scheme is of order p if y(tn)− Υ∆t(yn−1) = O
(
∆tp+1). Given a basic

integrator with a low order p, composition methods allow us to raise the order of the
scheme by constructing a composed numerical flow Υa1∆t ◦ · · · ◦ Υas∆t, composing the basic
one s times. According to [55] (Theorem 4.1, Section II.4), the composed flow is at least of
order p + 1 if and only if the coefficients a1, . . . , as verify the conditions a1 + . . . + as = 1
and ap+1

1 + · · ·+ ap+1
s = 0. For all s, these two algebraic equations have no real solution

if p is odd. To construct symmetric schemes with even orders, it has been suggested to
start with a second-order integrator and consider a three-times symmetric composition
(i.e., s = 3 and a3 = a1) to produce the so-called triple-jump numerical flow; see, e.g., [55]
(page 44) and [79]. In fact, this results from considering only symmetric compositions of
second-order integrators, i.e., methods with weighting coefficients satisfying an additional
condition as+1−i = ai with i = 1, · · · , s. This composition has a2 < 0, which limits its
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application for any non-reversible vector field. For s = 2 and any order p, these algebraic
equations have complex solutions:

a1 =
1
2
+

i
2

sin
(

π

p + 1

)
1 + cos

(
π

p + 1

) and a2 = a1, (11)

leading to higher-order pseudo-symmetric and symplectic numerical flows [63].
Note that this technique and the choice of sub-step sizes (11) are valid for raising

the orders of one-step methods, whereas this framework is not applicable to multi-step
methods such as the BDF-2 method. In the following, we develop a procedure for a two-step
asymmetric composition of the BDF-2 scheme using complex coefficients to both (i) increase
the order of the time scheme, and also (ii) adapt the time step using the imaginary part of
the compose numerical flow.

3.1. Second-Order Backward Differentiation BDF-2

For n > 1 and given yn−2 and yn−1, a numerical approximation of y(tn) is computed
using the BDF-2 scheme. For a constant time step ∆t, the BDF-2 scheme applied to (10)
approximates yn as follows:

3yn − 4yn−1 + yn−2 = 2∆t f (tn, yn).

For an adaptive time step ∆tn, the difference formula rather involves some coefficients
γi, with i = 0, 1, 2; see, for example, [80] (Appendix G.7). The approximated solution
verifies:

γ2yn + γ1yn−1 + γ0yn−2 = ∆tn f (tn, yn), with ∆tn = tn − tn−1.

This approximation can be seen as the output of the associated numerical flow, referred
to as:

(yn, yn−1) = ΥBDF−2
∆tn ,γi

(yn−1, yn−2).

In what follows, we develop a technique to increase the order of BDF-2 using the
double composition of the same discrete flow ΥBDF−2

∆tn ,γi
with appropriate time step and

scheme coefficients. To our knowledge, the developed approach is novel for the BDF-2
scheme, while we refer to [64,81,82] for more information on the composition of multi-step
methods in a cyclic way.

The method is based on computing a first approximate solution after a first jump
at time tn−1/2 using a BDF-2 method and a correctly chosen complex substep size so
that the solution yn at time tn is obtained by double composition of BDF-2. A schematic
representation of the extension to the complex space and two-step solution is provided in
Figure 2. It can be summarized as follows:

Step 1: (yn−1/2, yn−1) = ΥBDF2
a1∆tn ,γi

(yn−1, yn−2),

Step 2: (yn, yn−1) = Re
(

ΥBDF2
a2∆tn ,ωi

◦ ΥBDF2
a1∆tn ,γi

(yn−1, yn−2)
)

,

where the parameters a1, a2, ∆tn, γi and ωi will be explicitly introduced in the following
subsections.
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Figure 2. Schematic representation of the BDF-2 flow composition method and the entire solution
method.

3.2. Step 1: Calculation of an Intermediate Solution

For all n > 2, consider the time steps ∆tn so that tn = tn−1 + ∆tn. Our goal is to
produce a third-order approximation of y(tn) using yn−2 and yn−1. We first compute an
intermediate step solution, denoted yn−1/2, between yn−1 and the desired yn using yn−2
and yn−1. Thus, yn−1/2 ≈ y(tn−1/2) follows the BDF-2 scheme and is given by:

γ2yn−1/2 + γ1yn−1 + γ0yn−2 = (tn−1/2 − tn−1) f (tn−1/2, yn−1/2), (12)

where tn−1/2 = tn−1 + a1∆tn, and a1 is a substep coefficient to be set subsequently. The
coefficients γ0, γ1, and γ2 shall satisfy:

y(tn−1/2)− yn−1/2 = O
(
(a1∆tn)

3
)

.

Note that, for a BDF scheme with a given order, the coefficients in both fixed and
variable time steps do not depend obviously on the function f . We refer the interested
readers to [72] (page 412, Equation (5.12)) for more details. We follow the procedure in [80]
(Appendix G.7) to find the coefficients γi. Set f (t, y) = y, so that y0et is a solution of (10).
We express yn−2 and yn−1 in terms of yn−1/2:

yn−2 = e−(tn−1/2−tn−2)yn−1/2 and yn−1 = e−(tn−1/2−tn−1)yn−1/2.

By substituting in (12), we get:

γ2 + γ1e−(tn−1/2−tn−1) + γ0e−(tn−1/2−tn−2) = tn−1/2 − tn−1. (13)

By performing Taylor series expansions in (13), we obtain:

γ2 +γ1

[
1− (tn−1/2 − tn−1) +

1
2 (tn−1/2 − tn−1)

2 + · · ·
]

+γ0

[
1− (tn−1/2 − tn−2) +

1
2 (tn−1/2 − tn−2)

2 + · · ·
]
= tn−1/2 − tn−1.

Considering terms up to the second order gives the following linear system:
γ0 + γ1 + γ2 = 0

ε′nγ0 + γ1 + 1 = 0
ε′n

2
γ0 + γ1 = 0

, with ε′n =
tn−1/2 − tn−2

tn−1/2 − tn−1
. (14)

The solution for the above linear system is expressed by:

γ0 =
1

ε′n(ε′n − 1)
, γ1 = − ε′n

ε′n − 1
and γ2 =

ε′n + 1
ε′n

. (15)
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As a consequence, yn−1/2 is written as:

yn−1/2 =
γ0

(tn−1/2 − tn−1)− γ2
yn−2 +

γ1

(tn−1/2 − tn−1)− γ2
yn−1. (16)

Remark 1. If the time steps are equally spaced, that is ∆t = tn−1 − tn−2 = tn−1/2 − tn−1, then
ε′n = 2, γ0 = 1/2, γ1 = −4/2, and γ2 = 3/2. We recover the BDF-2 formula with fixed step size:

3yn−1/2 − 4yn−1 + yn−2 = 2∆t f (tn−1/2, yn−1/2). (17)

3.3. Step 2 and Solution Method

In the following, we use the three points yn−2, yn−1, and yn−1/2 to calculate an approx-
imation yn of y(tn); see Figure 2. We define a suitable condition to eliminate yn−2, thus
using only yn−1 and yn−1/2 and reducing Step 2 to a two-step method to calculate yn. We
seek yn that satisfy the following third-order backward difference formula:

ω2yn + ω1yn−1/2 + ω0yn−1 + ω−1yn−2 = (tn − tn−1/2) f (tn, yn). (18)

Similar to the previous subsection, we write yn−2, yn−1 in terms of yn and express
yn−1/2 using (16):

yn−2 = e−(tn−tn−2)yn,

yn−1 = e−(tn−tn−1)yn,

yn−1/2 =
γ0e−(tn−tn−2) + γ1e−(tn−tn−1)

(tn−1/2 − tn−1)− γ2
yn.

By substituting in (18), we get:

ω2 + ω1
γ0e−(tn−tn−2) + γ1e−(tn−tn−1)

(tn−1/2 − tn−1)− γ2
+ ω0e−(tn−tn−1) + ω−1e−(tn−tn−2) = (tn − tn−1/2).

By performing Taylor series expansions up to order 4, we obtain:

ω−1( (tn−1/2 − tn−1)− γ2)
[
1− (tn − tn−2) +

1
2
(tn − tn−2)

2 − 1
6
(tn − tn−2)

3 + · · ·
]
+

ω0( (tn−1/2 − tn−1)− γ2)
[
1− (tn − tn−1) +

1
2
(tn − tn−1)

2 − 1
6
(tn − tn−1)

3 + · · ·
]
+

ω1γ0

[
1− (tn − tn−2) +

1
2
(tn − tn−2)

2 − 1
6
(tn − tn−2)

3 + · · ·
]
+

ω1γ1

[
1− (tn − tn−1) +

1
2
(tn − tn−1)

2 − 1
6
(tn − tn−1)

3 + · · ·
]
+

ω2( (tn−1/2 − tn−1)− γ2) = ( (tn−1/2 − tn−1)− γ2) (tn − tn−1/2).

The equation can be arranged as follows:

−ω−1γ2 −ω0γ2 + ω1(γ1 + γ2)−ω2γ2

+ (ω−1 + ω0 + ω2) (tn−1/2 − tn−1) + (γ2ω−1 −ω1γ0)(tn − tn−2) + (γ2ω0 − γ1ω1)(tn − tn−1)

−
(
ω−1(tn − tn−2) + ω0(tn − tn−1)

)
(tn−1/2 − tn−1)−

1
2
(γ2ω−1 −ω1γ0)(tn − tn−2)

2

− 1
2
(γ2ω0 − γ1ω1)(tn − tn−1)

2

+
1
2
(
ω−1(tn − tn−2)

2 + ω0(tn − tn−1)
2) (tn−1/2 − tn−1) +

1
6
(γ2ω−1 −ω1γ0)(tn − tn−2)

3

+
1
6
(γ2ω0 − γ1ω1)(tn − tn−1)

3

= (tn − tn−1/2)(tn−1/2 − tn−1)− γ2 (tn − tn−1/2).
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We identify the terms of the same power to obtain a linear system in {ωi}i. To make
the system easier to read, we introduce the quantities:

(tn−1/2 − tn−1)

(tn − tn−1)
= a1,

(tn − tn−1/2)

(tn − tn−1)
= 1− a1,

(tn − tn−2)

(tn − tn−1)
= εn,

yielding the following linear system:

ω−1 + ω0 + ω1 + ω2 = 0

( a1 + γ2εn)ω−1 + ( a1 + γ2)ω0 − (εnγ0 + γ1)ω1 + ( a1)ω2 = −(1− a1)γ2

(2εn a1 + γ2ε2
n)ω−1 + (2 a1 + γ2)ω0 − (ε2

nγ0 + γ1)ω1 = −2(1− a1)a1

(3ε2
n a1 + γ2ε3

n)ω−1 + (3 a1 + γ2)ω0 − (ε3
nγ0 + γ1)ω1 = 0.

For each value of a1 and εn, this system must be solved to obtain the coefficients {ωi}i.
By manipulating the terms, we prove that:

εn = (1− a1) + a1ε′n, with ε′n = 1 +
rn

a1
and rn =

tn−1 − tn−2

tn − tn−1
. (19)

Thus, the solution of the above system is given by:

ω−1 = − (a1 − 1)
(
3a3

1 + (3rn − 4)a2
1 + (r2

n − 2rn + 2)a1 + rn
)

(3a2
1 + 2(rn − 1)a1 − rn)(1 + rn)rn(a1 + rn)

ω0 =
(1 + rn)(a1 − 1)

(
3a3

1 + (2rn − 4)a2
1 − 2(rn − 1)a1 + rn

)(
3a2

1 + 2(rn − 1)a1 − rn
)
rna1

ω1 = − (1 + rn)(a1 − 1)(2a1 + rn)(
3a2

1 + 2(rn − 1)a1 − rn
)
(a1 + rn)a1

ω2 = − (a1 − 1)2((3rn + 6)a1 + 2r2
n + 3rn)

(3a2
1 + 2(rn − 1)a1 − rn)(1 + rn)

.

(20)

Returning to the algebraic Equation (18), a fourth-order numerical approximation of
yn can be obtained without using yn−2 but provided ω−1 = 0. That is,

3a3
1 + (3rn − 4)a2

1 + (r2
n − 2rn + 2)a1 + rn = 0. (21)

Solving this equation in terms of a1 will help formulate the two-step composition of
the BDF. Note that the trivial case a1 = 1 causes all the coefficients ωi = 0, i = −1, 0, 1, 2 to
vanish, thus preventing the composition from being achieved. Thereafter, we will present
the composition algorithm of BDF with a fixed time step.

3.4. Algorithm of Composed BDF-2 Scheme with Fixed Time Step

Herein, the time steps tn are equidistant, which gives rn = 1 and εn = 2 for all n > 2.
Therefore, a1 6= 1 is the solution for ω−1 = 0, yielding:

(a1 − 1)(3a3
1 − a2

1 + a1 + 1) = 0.

That results in a complex step size:

a1 =
1
9

(
−8

b
(1

2
− i
√

3
2
)
− b
(1

2
+ i
√

3
2
)
+ 1

)
, with b =

(
2
√

19√
3
− 134

)1/3

.
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Hence, ε′n, a2, and the coefficients γi from (15) are computed as follows:

ε′n = 1 +
1
a1

, a2 = 1− a1, γ0 =
a2

1
a1 + 1

, γ1 =
a1 + 1

a1
, γ2 =

a1 + 2
a1 + 1

.

From (20), we also compute the coefficients {ωi}i:

ω−1 = 0, ω0 =
2(a1 − 1)(3a3

1 − 2a2
1 + 1)

(3a2
1 − 1)a1

,

ω1 = − 2(a1 − 1)(2a1 + 1)
(3a2

1 − 1)(a1 + 1)a1
, ω2 = − (a1 − 1)2(9a1 + 5)

2(3a2
1 − 1)

.

Algorithm 1 can be summarized as follows:

Algorithm 1 Composed BDF-2 with fixed time step.

1: Set fixed-point tolerance tol and time step ∆t
2: Set initial conditions (n = 0): y0 and y−1 = y0
3: Compute a1, γi and ωi, with i = 1, 2, 3
4: for n = 1, . . . , nmax do
5: Update time tn−1/2 = tn−1 + a1∆t
6: Initialize y0

n−1/2
7: for k = 0, . . . , kmax do
8: Compute γ2yk+1

n−1/2 + a1∆t f (tn−1/2, yk+1
n−1/2, yk

n−1/2) = −γ1yn−1 − γ0yn−2

9: if |yk+1
n−1/2 − yk

n−1/2| < tol then

10: Update solution yn−1/2 = yk+1
n−1/2

11: break
12: end if
13: end for
14: Update time tn = tn−1/2 + a2∆t with a2 = 1− a1

15: Initialize ŷn
0

16: for k = 0, . . . , kmax do
17: Compute ω2ŷn

k+1 + a2∆tk f (tn, ŷn
k+1, ŷn

k) = −ω1yn−1/2 −ω0yn−1

18: if |ŷn
k+1 − ŷn

k| < tol then
19: Update solution ŷn = ŷn

k+1

20: break
21: end if
22: end for
23: Set yn = Re

(
ŷn
)

as approximation of y(tn)
24: if tn+1 > T then
25: break
26: end if
27: end for

3.5. Algorithm for Composing BDF-2 with Adaptive Time Step

The algorithm is adapted to solve the stiff problem based on the composed BDF-2
method with adapted time steps. Its structure is similar to that presented in Algorithm 1.
Nevertheless, caution is essential for calculating the parameters a1, γi, and ωi, with
i = 1, 2, 3, which must now be updated at each time step.

The time step is adapted according to the imaginary part, which can represent a control
criterion for the temporal integration error, as will be shown in the numerical examples.
The temporal adaptation is performed in such a way that the temporal integration error
does not exceed a predefined accuracy requirement TOL. For n > 0 and given the order p
of the integrator, the adapted time step ∆tn+1 is calculated as follows:

∆tn+1 = ∆tn × p+1

√
TOL

C Im(ŷn)
(22)
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The algorithm is provided in Algorithm 2.

Algorithm 2 Composed BDF-2 with adaptive time steps.

1: Set fixed-point tolerance tol, time t = 0, and initial time step ∆t1
2: Set initial conditions: y0 and y−1 = y0
3: for n = 1, . . . , nmax do
4: Compute rn from (19) and a1 from (21)
5: Compute γi, with i = 1, 2, 3 from (15)
6: Update time tn−1/2 = tn−1 + a1∆tn
7: Initialize y0

n−1/2
8: for k = 0, . . . , kmax do
9: Compute γ2yk+1

n−1/2 + a1∆tn f (tn−1/2, yk+1
n−1/2, yk

n−1/2) = −γ1yn−1 − γ0yn−2

10: if |yk+1
n−1/2 − yk

n−1/2| < tol then

11: Update solution yn−1/2 = yk+1
n−1/2

12: break
13: end if
14: end for
15: Update time tn = tn−1/2 + a2∆tn with a2 = 1− a1
16: Compute ωi, with i = 1, 2, 3 from (20)
17: Initialize ŷn

0

18: for k = 0, . . . , kmax do
19: Compute ω2ŷn

k+1 + a2∆tn f (tn, ŷn
k+1, ŷn

k) = −ω1yn−1/2 −ω0yn−1

20: if |ŷn
k+1 − ŷn

k| < tol then
21: Update solution ŷn = ŷn

k+1

22: break
23: end if
24: end for
25: Set yn = Re

(
ŷn
)

as approximation of y(tn)
26: if tn+1 > T then
27: break
28: end if
29: Adapt the time step ∆tn+1 from (22)
30: end for

4. Numerical Approximation of the Fluid/Membrane Problem

In this section, we present the main aspects of the numerical discretization. For ease of
presentation, we provide the temporal discretization of both fluid and level-set problems
before applying the composition technique. A penalty method is introduced to handle the
surface divergence constraint, which reduces the system size and allows the use of classical
Navier–Stokes solvers. The level-set problem is solved using the streamline upwind Petrov–
Galerkin (SUPG) stabilization, while a fixed-point algorithm allows a tightly coupled
iterative approach for the fluid/vesicle problem.

4.1. Time Discretization of the Fluid Problem

Let us divide the time interval [0, T] into subintervals [tn, tn+1),with n = 0, . . . of
variable time steps ∆tn. For any n > 0, the unknowns un, pn, and ϕn at time step n are
iteratively computed. Semi-discrete geometric quantities and surface operators (e.g., n, H,
I − n⊗ n, . . . ) at time tn are endowed with a subscript n. The semi-discretized membrane
bending force at tn is written as: Fn = 1/Ca

{
∆s,nHn + H3

n/2
}

nn.
Hereafter, we present the fluid problem semi-discretized in time. Without loss of

generality, we assume equal densities of external and encapsulated fluids ρi = ρo, since no
dependence of densities on cellular behaviors has been observed in the literature [83]. Steps
1 and 2 of the composition algorithm both involve a second-order backward difference
formula with varying time steps. Let δtn and δi, i = 0, 1, 2 represent the time step and BDF-2
coefficients, respectively; they correspond to a1∆tn and γi in Step 1 and to a2∆tn and ωi in
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Step 2. In the following, we simply present the semi-discretized problem corresponding to
(yn, yn−1) = ΥBDF2

δtn ,δi
(yn−1, yn−2).

The time derivative term of u in the momentum equation is first discretized using a
second-order backward difference formula:

∂u
∂t

(t, x) =
γ2u(t, x) + γ1u(t− δtn, x) + γ0u(t− 2δtn, x)

δtn
+O

(
δt2

n

)
.

To subsequently present the penalty approach, we also use the method of characteris-
tics; see, e.g., [84]. For any n > 0, let u∗ = 2un−1 − un−2 be a second-order extrapolation
of u at time tn, with u−1 = u0 and u−1 being a convenient notation. We denote by X2,n−1
and X2,n the second-order characteristics terms using the predicted u∗. We consider a
second-order approximation of the Lagrange derivative. Given an approximation of ϕn
and Γn, the time-discretized problem (8) reads:

Find un, pn, and λn such that:

Re
δtn

(γ2un + γ1un−1oX2,n−1 + γ0un−2oX2,n−2)

−div(2η∗ε (D(un−1), ϕn)D(un)) +∇pn = 0 in Λ\∂Ωn, (23a)

div un = 0 in Λ, (23b)

divs,n un = 0 on Γn, (23c)

[[un]] = 0 on Γn, (23d)

[[2η∗ε (D(un−1), ϕn)D(un)− pnI]].nn − Fn + Hnλnnn −∇s,nλn = 0 on Γn, (23e)

un = ub on ΣD. (23f)

To reduce the size of the system and allow the use of standard Navier–Stokes solvers
by relaxing the constraint (23c), we present in the following subsection a penalized form of
this last problem.

4.2. Penalty Method

We point out that the velocity belongs to the admissible space K(V) ∩L, with:

K(V) =
{

v ∈ V(V) s.t. div v = 0 in Λ
}

and L =
{

v ∈
(

H1(Λ)
)2

s.t. divs v = 0 on Γ
}

.

To remove the inextensibility (23c), we write the problem as a minimization problem:

un = arg inf
v∈K(t,Vb)∩L

Jn(v), (24)

with

Jn(v) =
Re γ2

2

∫
Λ

v2 +
∫

Λ
η∗ε (D(un−1), ϕn)|2 D(v)|2

−
∫

Λ
(γ1un−1oX2,n−1 + γ0un−2oX2,n−2)v−

∫
Γn

Fn.v.

We approach the minimization problem (24) with another minimization problem by
penalizing the surface divergence-free condition. The membrane tension field λn no longer
appears as unknown in the problem to be solved. Let ελ be a small penalty parameter.
The velocity field is approximated by another satisfying the penalized problem. The same
notation is used for the approximate velocity, which is given by:

un = arg inf
v∈K(t,Vb)

Jn,ελ
(v),
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with
Jn,ελ

(v) = Jn(v) +
1

2ελ

∫
Γn
(divs,n v)2.

The mixed velocity/pressure formulation results from a saddle point formulation:

(un; pn) = arg inf
v ∈ V(Vb)

sup
q∈L2(Λ)

{
Jn,ελ

(v) +
∫

Λ
q div v

}
.

The variational formulation is obtained based on the corresponding optimality condi-
tions. After approximation of surface integrals over Γ as integrals over the entire domain
Λ, the weak formulation is given by:

find un ∈ V(Vb) and pn ∈ L2
0(Λ) such that:

Re γ2
δtn

∫
Λ

un · v +
∫

Λ
2η∗ε (D(un−1), ϕn)D(un) : D(v)−

∫
Λ

pn div v

+
1
ελ

∫
Λ
|∇ϕn|δε(ϕn) divs,n(un) divs(v)

=
∫

Λ

(
|∇ϕn|δε(ϕn) Fn − γ1un−1oX2,n−1 − γ0un−2oX2,n−2

)
· v, ∀v ∈ V(0),∫

Λ
q div un = 0, ∀q ∈ L2

0(Λ). (25)

We proceed with finite elements for the spatial discretization. Let us consider a
partition Th of Λ consisting of geometrically conformal triangular elements K, such that
Λ = ∪

K∈T
. For any K ∈ T , the mesh size h is the diameter of the largest mesh element

h = max hK. Let Pk
h be the h-dependent discrete finite element space spanned by the

Lagrange polynomials of degree k > 1. We consider the inf-sup stable finite element (Taylor–
Hood) [Pk+1

h ]2 − Pk
h for the discretization of u and p. The resulting nonlinear problem (25)

corresponds to a classical symmetric and non-singular sparse matrix. The system is solved
interatively with a preconditioned GMRES algorithm. Fixed-point iterations are also
considered at each time step n to allow better numerical stability.

4.3. Level Set Problem

In a similar way, the level-set equation is discretized in time using a BDF-2 scheme. We
also proceed with stabilization using the streamline upwind Petrov–Galerkin (SUPG) [85]
method. In fact, we consider a classical stabilization term, denoted by S(τK; ϕ, ψ), in (8a)
that consists of adding some diffusion in the streamline direction. The parameter τK is the
streamline diffusion coefficient that is proportional to the mesh size hK in the mesh element
K and depends on the discretized velocity un,h . We choose:

τK =
hK

sc‖un,h‖∞,K
, K ∈ Th,

with sc a scaling factor [86]. Given un, the time-discretized level-set equation is given by:
find ϕn ∈ X = W1,∞(Λ) ∩ H1(Λ) such that:∫

Λ

γ2 ϕn + γ1 ϕn−1 + γ0 ϕn−2

δtn
ψ +

∫
Λ
(un ·∇ϕn)ψ +

∫
Λ

S(τK; ϕn, ψ) = 0, (26)

for all test functions ψ ∈ X. Moreover, we regularly solve for a few iterations the so-called
redistancing problem, which helps to keep the level-set solution close to a signed distance
function [31].

Appendix A provides additional insights into the implementation of the composition
technique applied to the level set problem.
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5. Numerical Results

In this section, we conduct a set of numerical experiments in the case of ordinary
and partial differential equations to assess the main features of the proposed method. In
Example 1, an ODE test case is presented to study both the convergence properties of
the composed BDF-2 scheme and the time-stepping strategy based on the imaginary part
criterion. Example 2 is dedicated to the validation of the numerical framework in terms of
biophysical significance. Several validation tests are presented with comparisons to known
numerical and experimental results in the published literature. Finally, in Example 3, we
study the effect of non-Newtonian behavior on the membrane dynamics and present some
preliminary results.

Numerical simulations have been implemented using the finite element library FEn-
iCS [87].

5.1. Example 1: One-Dimensional Test Case—Accuracy-Order Analysis

In this example, we numerically solve the following stiff IVP using adapted time steps:

dy
dt

= y2 − y3, t ∈
[

0,
2
κ

]
y(0) = κ < 1.

Note that the independent variable belongs to an interval that depends on the initial

value. The IVP has a known exact solution y(t) =
1

W(ae a−t) + 1
, where a = 1

κ − 1 and

W(z) is the Lambert function defined as the solution for the equation WeW = z. The
solution starts to slowly increase from y(0) = κ before showing a stiff variation around
t = 1/κ; it eventually reaches a stationary state y→ 1 when t→ ∞. The closer the κ is to
zero, the steeper the curve around t = 1/κ. Figure 3 shows the exact solution for different
values of the parameter κ.

For a precise resolution, the numerical scheme must allow the use of a variable time
step so that the latter is reduced when strong variations of the solution are observed, while
it is increased otherwise. The time-stepping strategy could be based on an error estimate of
the numerical approximation so that the time step is adapted up to a given tolerance. If
the error is less than a tolerance, the step time is increased, and vice versa if not. We first
compute the solution for a fixed time step equal to ∆t = 2/640κ to see how the imaginary
part of the composed discrete flow behaves and whether this could represent an appropriate
error estimate. Figure 4 plots the evolution of the error between the approximate solution,
given by the real part of the composed discrete flow, and the exact solution. It also displays
the imaginary part of the composed scheme. The results clearly show that both curves have
the same pattern: they increase before reaching a maximum value around t = 1/κ, and
they decrease afterwards.

Consequently, the imaginary part represents a good error estimate and a precise
criterion for adapting the time step size. For different parameters κ, Figure 5 describes
the adapted time steps throughout the simulation periods. The results show that the time
step is correctly reduced to follow the dynamics of the solution when large variations
occur in the region of stiff variations of yn with n > 0. For κ = 0.01, we plot in the
same graph the adapted time steps as well as the approximate solution and the error
evolution. More importantly, Figure 6 shows the success of the method to control the error
and consequently achieve the desired accuracy by adapting the time step size; the error
remains less than 10−11.
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Figure 3. Graph of the exact solution of the initial value problem for different choices of the parameter
κ = 0.1, 0.05, 0.01, 0.005.
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Im(ŷn),κ = 0.1
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en,κ = 0.01

Im(ŷn),κ = 0.005

en,κ = 0.005

Figure 4. Time evolution of (i) the error between the exact and computed approximate solutions
en = |yn − y(tn)| and (ii) the error indicator based on the imaginary part Im(hatyn). Different values
of κ = 0.1, 0.05, 0.01, 0.005 are considered.

01020 40 100 200 400
tn
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κ = 0.1

κ = 0.05

κ = 0.01

κ = 0.005

Figure 5. Evolution of the adapted time step size ∆tn with respect to time t using the imaginary part
of the composed numerical flow as an adaptation criterion. The IVP is solved for different parameters
κ = 0.1, 0.05, 0.01, 0.005.
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(c)

yn

time tn

200150100500

1

0

(b)

|yn − y(tn)|
10−8

10−12

(a)

δtn
10

10−1

10−3

Figure 6. Quantitative study of accuracy obtained using adapted time steps. Plot of evolution in time
of the time step size (a), error (b), and approximated solution (c) for κ = 0.01.

The time accuracy of the numerical approximations is studied by calculating the
absolute errors for successively refined time steps compared to the exact solution. We
consider the standard BDF-2 scheme and its double composition. The change in error is
displayed in Figure 7, showing that optimal convergence is achieved. Convergence rates
for basic and composed schemes are reported in Table 1.

ΦBDF2
a2∆t ◦ ΦBDF2

a1∆t

ΦBDF2
∆tslope 3

slope 2

time step ∆t

max
n

|yn − y(tn)|

10−110−210−3

10−2

10−6

10−10

Figure 7. Temporal convergence results of the error between the exact solution and the calculated
solution for different time integration methods using ΥBDF2

∆t and the double flow composition ΥBDF2
a2∆t ◦

ΥBDF2
a1∆t . Uniform time steps are considered.

In the following, the time-stepping strategy will be used on a more complex PDE
problem simulating the dynamics of blood cells in flow.
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Table 1. Table showing the error convergence rates between the exact and approximate solution in
Figure 7, showing second-order and third-order for BDF-2 and its dual composition, respectively.

1/∆t 20 40 80 160 320 720

ΥBDF2
∆t 1.65 1.83 1.92 1.96 1.98 1.99

ΥBDF2
a2∆t ◦ ΥBDF2

a1∆t 2.777 2.925 2.975 2.991 2.996 2.998

5.2. Example 2: Membrane Dynamics in a Newtonian Fluid under Simple Shear Flow

In this example, we perform numerical simulations of the dynamics of a two-dimensional
vesicle under Newtonian shear flow. The Bingham parameter is then set to zero. A sketch
of the problem setup is provided in Figure 1. We study the dynamics of a vesicle of reduced
surface Ξ2D = 0.847 immersed in an initially stationary fluid. The membrane is confined
in a square domain with confinement parameter α = 1/2. It initially has an ellipse shape,
with semi-major and semi-minor axes of α/2 and α/4, respectively, and is located at the
center of the domain; see Figure 8 (left). The physical parameters of the simulation are:
Re = 5.6× 10−3 and Ca = 8× 104. Here, we consider a uniform time step ∆t = 5× 10−3.
Quasi-uniform unstructured meshes are generated using the mshr generator available in
the FEniCS packages. Unless otherwise specified, we define ελ ≈ h1.5 in our simulations,
where h is the mesh size. We then provide a numerical study of the optimal choice of the
penalty parameter ελ.

Under simple shear flow conditions, an inextensible two-dimensional vesicle under-
goes two characteristic major dynamic behaviors known as tank-treading and tumbling
regimes. For fixed physical parameters, while varying the viscosity contract between the
internal fluid and the external fluid, the dynamics of the membrane change drastically.
Indeed, for small viscosity ratios, the vesicle begins to rotate and reaches a stable shape
with a fixed inclination angle with respect to the flow direction. The membrane continues
to tank-tread around the internal fluid, which represents the tank-treading movement. By
increasing the viscosity ratio above a threshold value of β, the tank-treading motion is
supressed. The vesicle then behaves like a rigid elastic body that undergoes a periodic
rotational movement in flow like a rigid body around its center of mass; this is the tumbling
regime.

5.2.1. Tank-Treading Regime

We first set the viscosity ratio β = 1. Figure 8 provides snapshots showing the
dynamic behaviors of the vesicle until reaching the stationary tank-treading regime. We
also plot in Figure 9 the temporal evolution of the membrane inclination angle, showing the
convergence towards an equilibrium steady state. In Figure 10, we provide the variation of
the relative area and relative perimeter errors throughout the simulation period, showing
good conservation of area and perimeter as required by the cell model.

Figure 11 shows the temporal evolution of the imaginary part, which is important to
perform the adaptation of the time step afterwards. It can be seen that the imaginary part
follows the dynamics of the membrane, where larger values are obtained as the membrane
is away from the stationary tank-treading shape and begin to decrease until the equilibrium
regime is reached.
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t = 0.6 t = 0.8

t = 0.9 t = 1.1

t = 1.5 t = 2

Figure 8. Snapshots showing the deformations and movement of a membrane following a tank-
treading regime in simple shear flow. Snapshots showing membrane deformation (red color), velocity
amplitude, and streamlines. Physical parameters: Ξ2D = 0.847, β = 1, Re = 5.6× 10−3, Ca = 8× 104,
and Bn = 0.
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0

π/4

π/2

0 0.5 1 1.5 2

time tn

θ

Figure 9. Time evolution of the membrane’s inclination angle for a vesicle in a tank-treading
movement under simple shear flow. Physical parameters: Ξ2D = 0.847, β = 1, Re = 5.6× 10−3,
Ca = 8× 104, and Bn = 0.

10−5

10−3

10−1

0 0.5 1 1.5 2

time tn

|Γ(t)| − |Γ(0)|
|Γ(0)|

|Ω(t)| − |Ω(0)|
|Ω(0)|

Figure 10. Time evolution of the relative error in the membrane’s area and perimeter for a vesicle in a
tank-treading movement. Logarithmic scale is used on the y axis. Physical parameters: Ξ2D = 0.847,
β = 1, Re = 5.6× 10−3, Ca = 8× 104, and Bn = 0.

10−7

10−6

10−5

10−4

0 0.5 1 1.5 2

time tn

Im

Figure 11. Error estimation based on the imaginary part throughout the simulation period for a
vesicle in a tank-treading movement. Logarithmic scale is used on the y axis. Physical parameters:
Ξ2D = 0.847, β = 1, Re = 5.6× 10−3, Ca = 8× 104, and Bn = 0.
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5.2.2. Tumbling Regime

We now set a viscosity ratio β = 10, resulting in a regime change towards a tumbling
movement. The simulation is run for one period of complete rotation of the vesicle.
Snapshots of the membrane at successive instants are provided in Figure 12.

We also provide in Figure 13 the temporal evolution of the area and perimeter, showing
good conservation properties.

t = 0.25 t = 0.4

t = 1.15 t = 1.62

t = 2.39 t = 2.45

Figure 12. Tumbling motion of a vesicle immersed in a Newtonian fluid under simple shear flow.
Snapshots showing membrane deformation (red color), velocity amplitude, and streamlines. Physical
parameters: Ξ2D = 0.847, β = 10, Re = 5.6× 10−3, Ca = 8× 104, and Bn = 0.



Symmetry 2023, 15, 1138 24 of 33

10−5

10−3

10−1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time tn

|Γ(t)| − |Γ(0)|
|Γ(0)|

|Ω(t)| − |Ω(0)|
|Ω(0)|

Figure 13. Time evolution of the relative error in the membrane’s area and perimeter for a vesicle in
a tumbling movement. Logarithmic scale is used on the y axis. Physical parameters: Ξ2D = 0.847,
β = 10, Re = 5.6× 10−3, Ca = 8× 104, and Bn = 0.

The angle of inclination of the membrane and the evolution over time of the imaginary
part of the solution are provided respectively in Figures 14 and 15. Observe that the
imaginary part has four maxima during a tumbling period, which correspond to the angles
of the vesicle 0,−π/2,−π, π/2. In particular, when the angle of inclination is close to
−π/2 and π/2, the vesicle becomes perpendicular to the flow and undergoes a strong
shearing force, inducing better tracking of the latter if the time step is sufficiently small.

−π/2

0

π/2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time tn

θ

Figure 14. Time evolution of the membrane’s inclination angle for a vesicle in a tumbling movement.
Physical parameters: Ξ2D = 0.847, β = 10, Re = 5.6× 10−3, Ca = 8× 104, and Bn = 0.

10−7
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10−5

10−4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time tn

Im

Figure 15. Error estimation based on the imaginary part throughout the simulation period for a
vesicle in a tumbling movement. Logarithmic scale is used on the y axis. Physical parameters:
Ξ2D = 0.847, β = 10, Re = 5.6× 10−3, Ca = 8× 104, and Bn = 0.
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5.2.3. Calibration of the Penalty Parameter

We proceed with a numerical study to better study the setting of the penalty parameter
ελ. We consider a vesicle with a reduced area Ξ2D = 0.85 in simple shear flow and fix a
viscosity rate of either β = 1 (tank-treading motion) or β = 10 (tumbling motion). The
same additional parameters as the previous example are considered. We consider several
values of the penalty ελ and evaluate in Table 2 the relative error on the perimeter. Errors
are calculated over the simulation period as follows:

e|Γ| =
∫ T

0

∣∣∣|Γ(t)| − |Γ(0)|∣∣∣ dt.

Note that the mass conservation properties are improved by decreasing the penalty
parameter, up to a certain value of ελ, beyond which the perimeter is less well preserved.
Accordingly, we choose ελ = h1.5 in the following simulations.

Table 2. Evaluation of the relative error on the perimeter of a vesicle with a reduced area Ξ2D = 0.85.
Sensitivity study of the conservation of the perimeter with respect to the choice of ελ. Simulations
with a mesh size h = 1.7× 10−2.

ελ h1 h1.2 h1.4 h1.6 h1.8 h2 h2.3

β = 1 0.0022 0.021 0.0138 0.0082 0.03692 0.0512 0.0675

β = 10 0.036 0.0013 0.0027 0.0057 0.0199 0.0309 0.0458

5.2.4. Quantitative Validation with Respect to Existing Results

Subsequently, we proceed to the numerical validation of our method in the Newtonian
case with some well-known results in the published literature.

Firstly, we choose the physical parameters β = 1, Re = 10−3, and Ca = 102. The
vesicle follows a tank-treading regime, and we focus on the angle of equilibrium in the
steady-state regime. A quantitative validation is performed for different reduced areas
Ξ2D ∈ [0.6, 0.9]. Figure 16 shows the steady state inclination angle, denoted by θ∗, obtained
with different numerical methods by Laadhari et al. [76], Salac et al. [83], Kraus et al. [88],
and Zhao et al. [89], as well as the experimental results provided by Kantsler and Steinberg
in [90]. The numerical results show good overall agreement.

Secondly, we set β = 2.7 and keep the other physical parameters the same. Comparison
with the numerical results of Laadhari et al. [76], Zhao et al. [89], and the experimental
results in [90] are provided in Figure 17. A satisfactory agreement is observed with regard
to the published data.

Finally, we are interested in the transition between tank-treading and tumbling regimes,
which occurs at a threshold value of the viscosity ratio, called β∗. This is called the phase
diagram. We report in Figure 18 the critical value β∗ and compare it with the results
obtained from other numerical approaches in [91] (phase-field method, Re = 0), [83] (level-
set method, finite difference method), [76] (level-set method, finite element method), Keller
and Skalak’s theory [92], as well as the experimental results of [90]. A good qualitative and
quantitative agreement is observed.

5.3. Example 3: Membrane Dynamics in a Casson Shear Flow

In this test case, we study the effect of the Casson model on the dynamic motion of
the membrane.

First, we set β = 1, Re = 10−3, and Ca = 102. The vesicle then follows a tank-treading
motion, and we report the steady-state tilt angle in the case of a purely Newtonian fluid
model as well as the change in angle when setting a non-zero Bingham parameter Bn.
We consider different reduced areas Ξ2D ∈ [0.6, 0.9], and we set Casson’s regularization
ξ = 10−2. The results reported in Figure 19 illustrate small changes in tilt angle for small
values of Bn, while larger changes are observed for Bn = 2.
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π/8

π/6

π/4
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β = 1

θ
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Ξ2D

this work

Laadhari et al.

Kraus et al.

Kantsler et al.

Zhao et al.

Figure 16. Vesicle under tank-treading regime in simple linear shear flow. Inclination angle at equi-
librium θ∗ versus the reduced area Ξ2D. Physical parameters: β = 1, Re = 10−3, and Ca = 102. Com-
parisons with the published results in Laadhariet al. [76] (Re = 10−3 and Ca = 102), Salac et al. [83]
(Re = 10−3 and Ca = 102), Kraus et al. [88] (Ca = 10), Zhao et al. [89] (Ca = 9), and the experiments
of Kantsler and Steinberg [90].

π/12

π/8

π/6

π/5

0.7 0.8 0.9 1

β = 2.7

θ
∗

Reduced area

this work

Laadhari et al.

Zhao et al.

Kantsler et al.

Figure 17. Vesicle following a tank-treading regime in simple linear shear flow. Angle of inclination
at equilibrium θ∗ with respect to the reduced area Ξ2D. Physical parameters: β = 2.7, Re = 10−3, and
Ca = 102. Comparison with the numerical results published in Laadhari et al. [76], Zhao et al. [89],
and the experimental results of Kantsler and Steinberg in [90].

Now, we present a comparative study of the parameters β = 1, Re = 10−3, and
Ca = 102, for both Newtonian and non-Newtonian cases with Bn = 2. We observe
the motion of a vesicle until it reaches a steady-state regime, undergoing tank-treading.
Figure 20 displays the steady-state membrane deformations and the surrounding velocity
profile for both cases. Our results indicate that a higher Bingham number leads to an
inclination closer to the horizontal position.
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β⋆
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2D KS theory

KS experiments
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Beaucourt et al.

this work

Figure 18. Phase diagram showing the critical viscosity contrast β? required for the tank-
treading/tumbling transition, versus the reduced area parameter Ξ2D. Comparisons with numerical
results in [91] (phase-field method, Stokes limit), [83] (level-set, finite difference method), [76] (level-
set, finite element method), KS theory [92], and experimental results in [90].

π/12

π/8

π/6

0.6 0.7 0.8 0.9 1

β = 1

θ
∗

Ξ2D

Bn=0

Bn=0.02

Bn=0.2

Bn=2

Figure 19. Numerical study of the effect of Casson flow on the vesicle tank-treading motion under
simple shear flow conditions. Change in the angle of inclination at equilibrium θ∗ with respect to
the reduced areas Ξ2D for different values of Bn. Simulation parameters: β = 1, Re = 10−3, and
Ca = 102.

We hereafter study the effect of Casson’s rheological model on the phase diagram for
Bn = 2. The numerical results are reported in Figure 21, showing slightly higher values
of the critical viscosity ratio needed to achieve the transition between tank-treading and
tumbling regimes.
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(a)

(b) (c)

Figure 20. Change in the tank-treading stationary state between the Newtonian and non-Newtonian
cases for a vesicle in simple shear flow. (a) Bn = 0 (red color), Bn = 2 (blue color). (b) Velocity profile
for Bn = 0. (c) Velocity profile for Bn = 2.

5

6

7

0.7 0.75 0.8 0.85 0.9 0.95

β⋆

Ξ2D

Bn=0

Bn=2

Figure 21. Numerical study of the effect of Casson flow on the transition from tank-treading to
tumbling for a vesicle in simple shear flow. Changed critical viscosity contrasts β∗ against reduced
areas Ξ2D for Bn = 0 and Bn = 2. Physical parameters: Re = 10−3 and Ca = 102.

In conclusion, Casson’s non-Newtonian rheology should have an impact on the dy-
namics of red blood cells and deserves further efforts to study it. This is beyond the scope of
this article, but will be deeply investigated from a biophysical point of view in future work.
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6. Conclusions

We introduced a finite element methodology for the numerical simulation of inextensi-
ble biomembranes mimicking red blood cells immersed in a non-Newtonian Casson fluid.
The main contributions of this article can be summarized as follows: (i) The rheological
properties of blood flow in small capillaries are described by a non-Newtonian viscoplastic
model through Casson’s constitutive law. To our knowledge, this is the first time that a
realistic viscoplastic hemorheological model has been considered for the RBC modeling
problem. (ii) Our methodology involves the introduction of the numerical integration
approach based on the double-flow composition of the basic second-order backward differ-
entiation (BDF-2) formula using complex coefficients in order to increase the order of the
method. Our approach allows for an elegant estimation of the error and especially allows
us to raise the order of the integrator from 2 to 3. (iii) An adaptive time-stepping strategy
is introduced for higher precision in the numerical resolution. The adaptation criterion is
based on a precise criterion obtained by projection of the complex approximate solution
on the imaginary axis. (iv) Fluid-membrane interactions are handled implicitly through a
level-set representation combined with a penalty approach. The method shows good con-
servation of area and perimeter (crucial issue in Eulerian methods). (v) Several numerical
examples involving both ordinary and partial differential equations are performed to assess
in detail the relevance of the mathematical model in terms of physiological significance.
Convergence analysis is performed, showing the optimal spatio-temporal convergence
behaviors. In addition, qualitative and quantitative comparative studies against analytical,
numerical, and experimental results known in the published literature are carried out to
validate and show the accuracy of the presented numerical approach. (vi) Preliminary
study and results for the effect of the non-Newtonian rheological model on RBC regimes
under simple shear flow are presented, in the hope of triggering extensive experimental
and numerical studies to further explore cellular dynamics in small capillaries.

Some extensions of the developments in this article are currently being explored. In
particular, the non-Newtonian effect will be explored in more detail in a separate work.
This is part of a larger study of the dynamics of the biological membranes and red blood
cells. We focus on developing high-precision mathematical models that better describe the
mechanical properties of the cytoskeleton [32,37,93,94]. Motivated by the importance of
geometric symmetries in blood flow, we will also study RBC dynamics in realistic three-
dimensional axisymmetric geometries as well as flow symmetry. In a predictive modeling
framework, we also plan to use the aforementioned algorithms in fluid mechanics learning
with the aim of predicting the dynamics of red blood cells. We are also exploring higher-
order schemes by composition of symmetric methods of order 2 and multi-step composition
for various basic integrators.
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Appendix A

Note on the Composition Technique for the Level-Set Problem

For the sake of clarity, we provide here some outlines of the numerical implementation
of the composition technique applied to solve the level-set advection, that is, to calculate
ϕn using the double composition of BDF-2 with complex coefficients. Indeed, we need to
perform operations with complex numbers using a mixed formulation and calculate their



Symmetry 2023, 15, 1138 30 of 33

real and imaginary parts. To begin with, we introduce the complex field Φ ∈ X×X such
that Φ = ϕ + iϕ. It follows that ϕ = Re(Φ). A vector notation Φ := (ϕ, ϕ)T would be more
appropriate and will be adopted. It follows that the internal domain of the membrane is
the real part of Φ, that is, Ω = {x ∈ Λ s.t. ϕ(x) = Re(Φ(x)) < 0}.

As a consequence, elementary algebraic operations such as addition and multiplication
are properly set for arbitrary complex numbers Φ(1) = (ϕ(1), ϕ(1))T and Φ(2) = (ϕ(2), ϕ(2))T

as follows:

Φ(1) + Φ(2) =
(

ϕ(1) + ϕ(2), ϕ(1) + ϕ(2)
)T

, (A1)

Φ(1)Φ(2) =
(

ϕ(1)ϕ(2) − ϕ(1)ϕ(2), ϕ(1)ϕ(2) + ϕ(1)ϕ(2)
)T

. (A2)

We also define the scalar product in X×X, the gradient operator, and the product
between tensor elements ∇Φ(1) and ∇Φ(2) as follows:〈

Φ(1), Φ(2)
〉
X×X

=
(〈

ϕ(1), ϕ(2)
〉
X

,
〈

ϕ(1), ϕ(2)
〉
X

)T
, (A3)

∇Φ = (∇ϕ,∇ϕ)T , (A4)〈
∇Φ(1),∇Φ(2)

〉
X×X

=
(
∇ϕ(1)∇ϕ(2),∇ϕ(1)∇ϕ(2)

)T
. (A5)

Our goal is to find Φ, whose imaginary part will be used to adapt the time step.
Starting from a real part corresponding to the level-set function, we set the initial condition
Φ0 = (ϕ0, 0)T . The level-set equation is presented in its complex form as follows:

∂Φ
∂t

+ U.∇Φ = 0. (A6)

Here U = (u, ū)T represents the complex version of the velocity field, with an imagi-
nary part ū initially set to zero. For any n > 1, the time discretized equation using BDF-2
with variable time steps can be written as follows:

γ′2Φn + δtnUn.∇Φn = −
(
γ′1Φn−1 + γ′0Φn−2

)
, (A7)

where γ′i are functions of complex variables representing the coefficients of the BDF-2
scheme with adaptive time steps and δtn is the time step size.
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