
PREPRINT

A Finite Element Approach For Modeling Biomembranes In Incompressible

Power-Law Flow

Aymen Laadharia) and Ahmad Deeb

Department of Mathematics, College of Arts and Sciences,

Khalifa University of Science and Technology, Abu Dhabi,

United Arab Emirates.

(Dated: December 12, 2022)

We present a numerical method to model the dynamics of inextensible biomembranes in a

quasi-Newtonian incompressible flow, which better describes hemorheology in the small

vasculature. We consider a level set model for the fluid-membrane coupling, while the local

inextensibility condition is relaxed by introducing a penalty term. The penalty method is

straightforward to implement from any Navier-Stokes/level set solver and allows substan-

tial computational savings over a mixed formulation. A standard Galerkin finite element

framework is used with an arbitrarily high order polynomial approximation for better ac-

curacy in computing the bending force. The PDE system is solved using a partitioned

strongly coupled scheme based on Crank-Nicolson time integration. Numerical experi-

ments are provided to validate and assess the main features of the method.
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I INTRODUCTION

I. INTRODUCTION

This paper is concerned with the numerical study of the time-dependent dynamics of biomem-

branes in a surrounding Newtonian and non-Newtonian flow. The coupled fluid-membrane prob-

lem is highly nonlinear and time consuming.

Blood is a very complex fluid. Its rheology at the macroscopic scale depends both on the indi-

vidual dynamics of its embedded entities and their fluid-structure interactions at the microscopic

level. Red blood cells, referred to as RBCs, represent its main cellular component; They are re-

sponsible for the supply of oxygen and the capture of carbon dioxide. In the laboratory, giant

unilamellar vesicles (diameter ≈ 10µm) are biomimetic artificial liquid drops, used in vitro and in

silico to study the RBCs. Understanding the dynamics of RBCs in flow remain a difficult problem

in the field of computational physics and at the theoretical level as well, consequently leading to a

growing interest in the past two decades. In the published literature, several works have covered

the areas of experimental biology1, theoretical biology2, physics3–5 and applied mathematics6,7.

From a mechanical continuum perspective, Canham8, Helfrich9 and Evans10 independently

introduced in the early 1970s a model to describe the mechanics of lipid bilayer membranes, where

cellular deformations are driven by the principal curvatures. This results in a highly nonlinear

membrane force with respect to shape, see a mathematical derivation for a generalized energy

functional based on shape optimization in11.

Different methods have been developed to study the dynamics of biomembranes in a Newto-

nian flow. We can distinguish the level set method12–14, the phase field method15, the immersed

boundary method16, the boundary integral method17, the parametric finite elements7, and the lat-

tice Boltzmann method18. From a numerical point of view, iterative and fully explicit decoupling

strategies for the membrane-fluid problem are the most used techniques14,19. An explicit treatment

of the bending force usually leads to numerical instability problems and severe time step limita-

tions, depending on the local mesh size and bending stiffness. However, only few works devised

semi-implicit7 or fully implicit time integration schemes13,20. Although stability is improved, a

high computational burden is generally obtained with implicit strategies. Other interesting decou-

pling strategies can be found in21–24.

While blood flow behaves like Newtonian fluid in larger diameter arteries at high shear rates, it

exhibits non-Newtonian behavior in small diameter arteries with low shear rates at the microscopic

scale25. Non-Newtonian rheology is mainly due to polymerization and the underlying mechanisms
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II MATHEMATICAL SETTING

leading to the activation and deactivation of platelets and the interactions between different micro-

scopic entities. Blood viscosity tends to increase at low shear rates as RBCs aggregate into a roller

shape. The Casson, Power-Law, and Quemada models are the most widely used generalised New-

tonian rheologies for blood26,27. To our knowledge, such models have not yet been studied for the

current problem. In this work, we consider a quasi-Newtonian power law model to describe the

hemorheology.

The aim of this paper is to study the dynamics of biomembranes in a complex non-Newtonian

incompressible viscous flow. In order to keep a reasonable computational cost compared to a

fully mixed formulation, we design a penalty method to account for the local inextensibility of the

membrane. Various higher-order finite element approximations are used to better approximate the

bending force. We present a set of numerical examples to validate and show the main features of

the method.

FIG. 1: Sketch of the membrane Γ embedded into a computational domain Λ, while Ω is the

inner region.

II. MATHEMATICAL SETTING

A. Membrane model

The deformations of the membrane allow minimizing the Canham-Helfrich-Evans8,9 bending

energy while preserving the local inextensibility of the membrane. Let H be the mean curvature,

corresponding to the sum of the principal curvatures on the membrane. In the two-dimensional
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B Level set description II MATHEMATICAL SETTING

case, the membrane minimizes the bending energy given by:

J(Ω) =
kb

2

∫
∂Ω

(H(Ω))2 ds, (1)

where kb ≈ 10−20/10−19kgm2 s−2 is the bending rigidity modulus. The energy is a variant of the

Willmore energy28. Let T be the final time of the experiment. For any time t ∈ [0,T ], Ω(t)⊂ Rd ,

d = 2,3, is the interior domain of the membrane Γ(t) = ∂Ω(t), assumed Lipschitz continuous.

The membrane is embedded in the domain Λ which is large enough so that Γ(t)∩ ∂Λ = /0, see

Fig. 1. Hereafter, the dependence of Ω and Γ upon t is dropped to alleviate notations.

For a membrane with fixed topology, the Gauss-Bonnet theorem29 states that the energy term

weighted by kg is constant and can be ignored. The spontaneous curvature helps describe the

asymmetry of phospholipid bilayers at rest, e.g. when different chemical environments exist on

either side of the membrane. We assume H0 = 0. Let n and ν be the outward unit normal vector

Γ(t) and on ∂Λ, respectively. We introduce the surface gradient ∇s· = (Id−n⊗n)∇·, surface

divergence divs ·= tr(∇s·) and surface Laplacian ∆s·= divs (∇s·), where Id is the identity tensor.

The expression and derivation of the bending force using shape optimization tools can be found

in11.

Membrane deformations are subject to specific constraints. Fluid incompressibility is assumed,

this is divu= 0 in Λ. In addition, RBCs are phospholipid bilayers with local membrane inexten-

sibility. This corresponds to a zero surface divergence, i.e. divsu = 0 over Γ, that helps preserve

the local perimeter. Global perimeter conservation follows from Reynolds’ lemma13. As a conse-

quence, a saddle point formulation results in a membrane surface force that balances the jump in

hydrodynamic stress tensor and appears in the right side of (3g).

B. Level set description

The motion of the membrane is followed implicitly in a level set framework as the zero level

set of a function ϕ . For t ∈ ]0,T [, ϕ is initialized by a signed distance ϕ0 to Γ(0) and satisfies

the transport equation (3a), with u the advection vector and ϕ = ϕb on the upstream boundary

Σ− = {x ∈ ∂Λ : u ·ν(x)< 0}. Geometric quantities such as n = ∇ϕ/|∇ϕ|, H = divsn and

bending force are coded in terms of ϕ and are then extended to the entire computational domain

Λ. Over time, a redistancing problem is resolved to maintain the signed distance property lost

by advection30. Indeed, a too large or too small gradient of ϕ close to Γ deteriorates the precise
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C Governing equations II MATHEMATICAL SETTING

compting of the surface terms. Let ε be a regularization parameter. We introduce the regularized

Heaviside Hε and Dirac δε functions:

Hε(ϕ) =


0, when ϕ <−ε

1
2

(
1+

ϕ

ε
+

1
π

sin
(

πϕ

ε

))
, when |ϕ|⩽ ε,

1, otherwise

and δε(ϕ) =
dHε

dϕ
(ϕ).

Given a function ζ defined on Γ and its extension ζ̃ to Λ, surface integrals are approximated as

follows: ∫
Γ

ζ (x)ds ≈
∫

Λ

|∇ϕ|δε (ϕ) ζ̃ (x)dx.

C. Governing equations

We assume constant densities ρi and ρo inside and outside of the membrane, respectively.

Let us introduce the fluid velocity u and the pressure p which represent a Lagrange multiplier

corresponding to the incompressibility constraint on Λ. Analogously, a position-dependent surface

tension λ helps imposing the local inextensibility constraint on Γ. Let D(u) = (∇u+∇uT )/2

be the shear strain rate tensor, so the fluid Cauchy stress tensor is σ = T− pI where T is the

stress deviator. The normal stress jump [σn]+− = σ+n−σ−n on Γ describes the interactions of

the membrane with the surrounding fluid20, while the stress discontinuity is calibrated by (3f).

For a simple shear flow, ub is the shear rate on ΣD ⊂ ∂Λ, while natural boundary conditions are

prescribed on ΣN ⊂ ∂Λ.

We assume a quasi-Newtonian power-law model26 where the nonlinear constitutive equation

expresses the stress deviator with a power-law viscosity function as

T = 2η

(
|D(u)|2

)
D(u), with η (γ) = Kγ

(υ −1)/2, for all γ ∈ R, (2)

where υ > 0 and K are the power index and consistency index, respectively. According to31,

υ = 0.7755 < 1 (i.e. a shear thinning fluid) and K = 14.67×10−3 Pa s for normal blood samples

obtained using a multiple regression technique. The Newtonian case υ = 1 corresponds to a linear

stress-strain relationship that reduces the viscosity function η(γ) = K to a constant. By analogy

with the Newtonian case, K = µi and K = µo stand for the values of the consistency index in the

intra- and extra-membrane domains, respectively.
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C Governing equations II MATHEMATICAL SETTING

We perform a dimensionless analysis. Let U be the maximum velocity on ΣD and D the diam-

eter of a circle having the same membrane perimeter. We consider the dimensionless Reynolds

number Re = ρoUDµ
−1
o which expresses the ratio between the inertial and viscous forces, and

the capillary number Ca = µoD2Uk−1
b which compares the flow force to the bending resistance of

the membrane. Furthermore, the parameter β = µi/µo represents the ratio of consistency indices

and corresponds to the viscosity ratio with respect to extracellular viscosity in the Newtonian case.

The regularized dimensionless viscosity function is:

µε(ϕ)|D(u)|υ−1 = (Hε(ϕ)+β (1−Hε(ϕ))) |D(u)|υ−1.

Following20, we choose ρi = ρo. Let σε stand for the regularized Cauchy stress tensor. The

dimensionless reduced area Ξ2d = 4π|Ω|/|Γ|2 ∈]0,1] compares the area of the interior domain to

that of a circle with the same perimeter. The dimensionless coupled problem writes: find ϕ , u, p

and λ such that

∂tϕ +u.∇ϕ = 0 in ]0,T [×Λ (3a)

Re (∂tu+u.∇u)−div
(
σε(D(u), p,ϕ)

)
= 0 in ]0,T [×(Λ\∂Ω) (3b)

divu = 0 in ]0,T [×Λ (3c)

divs u = 0 on ]0,T [×∂Ω (3d)

[u]+− = 0 on ]0,T [×∂Ω (3e)

[σεn]
+
− = ∇sλ −λHn+(2Ca)−1 (2∆sH +H3)n on ]0,T [×∂Ω(3f)

ϕ = ϕb on ]0,T [×Σ− (3g)

u = ub on ]0,T [×ΣD (3h)

σ.ν = 0 on ]0,T [×ΣN (3i)

ϕ(0) = ϕ0 in Λ (3j)

u(0) = u0 in Λ. (3k)

Let ελ = 10−8 be the penaly parameter. To make the method straightforward to implement from

any Level Set / Navier-Stokes solver and considerably reduce the size of the linear system to

be solved, the inextensibility constraint is relaxed by introducing a penalty term. Indeed, the

corresponding minimization problem should be approximated by another minimization problem

by penalizing the local inextensibility constraint for the velocity (3d). See analogous penalty

method for other applications in32.
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III NUMERICAL APPROACH

To overcome instability problems when solving the level set equation using the standard

Galerkin method, there are a variety of stabilization methods such as the streamline diffusion

method, the subgrid viscosity method and the Streamline Upwind Petrov-Galerkin (SUPG)

method used in this work. The latter introduces a stabilization term by adding a diffusion in

the streamline direction.

We introduce the functional spaces of admissible velocity u, pressure p and level set ϕ:

V(ub) =
{
v ∈

(
H1 (Λ)

)d
: v = ub, on ΣD

}
, Q=

{
q ∈ L2 (Λ) :

∫
Ω

q = 0
}
,

X(ϕb) =
{

ψ ∈W 1,∞ (Λ)∩H1 (Λ) : ψ = ϕb, on Σ−
}
.

To reduce a derivation order of ϕ when evaluating the bending strength, we use the Green for-

mula on a closed surface. See e.g.13. Testing with appropriate test functions and integrating (3b)

over Ω and Λ\Ω separately, the variational problem writes:

Find u∈C 0
(
]0,T [,L2(Λ)d

)
∩L2

(
]0,T [,V(ub)

)
, p∈L2

(
]0,T [,Q

)
, and ϕ ∈C 0

(
]0,T [,L2(Λ)d

)
∩

L2
(
]0,T [,X(ϕb)

)
such that

Re
∫

Λ

(
∂u

dt
+u ·∇u

)
·v+

∫
Λ

2µε(ϕ)|D(u)|υ−1D(u) : D(v)+
1
ελ

∫
Λ

divs(u) divs(v)|∇ϕ|δε(ϕ)

−
∫

Λ

p div v+
1

2Ca

∫
Λ

δε(ϕ)|∇ϕ|
(

2∇sH ·∇s(n ·v)−H3n ·v
)
=

∫
ΣN

σν ·v, ∀v ∈ V(0),(4a)∫
Λ

q div u= 0, ∀q ∈Q, (4b)∫
Λ

∂ϕ

∂ t
ψ +

∫
Λ

(u ·∇ϕ)ψ +
∫

Λ

ξ (τ;ϕ,ψ) = 0, ∀ψ ∈ X(0) . (4c)

Here, ξ (τ;ϕ,ψ) stands for the SUPG stabilisation term and τ is a stabilization parameter defined

element wise to control the amount of diffusion.

III. NUMERICAL APPROACH

The interval [0,T ] is divided into N sub-intervals [tn, tn+1) with 0 ⩽ n ⩽ N −1 of constant step

∆t . For n > 0, un, pn and ϕ
n are computed by induction to approximate u, ϕ and p at tn. We

use the Crank-Nicolson scheme for the time discretization of (3a) and (3b) without the need to

bootstrap the initial conditions. The choice of this scheme was for its simplicity to implement and

being a second order one-step integrator. The discretized (3a) writes

ϕ
n+1 = ϕ

n +
∆t
2
(
u ·∇ϕ

n+1 +u ·∇ϕ
n) in Λ.
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IV NUMERICAL EXAMPLES

For the spatial discretization, we consider a partition Th of Λ consisting of geometrically con-

formal open simplicial elements K. We define the mesh size as the diameter of the largest mesh

element h = maxhK with K ∈ Th.

We consider a Taylor-Hood finite element approximation for u and p. After using a surface

Green’s transformation, the evaluation of the Canham-Helfrich-Evans force requires a third-order

derivative in ϕ which induces numerical oscillations when using lower-order polynomial approxi-

mations. To avoid introducing additional mixed variables and additional equations as in13, higher

degree polynomials are considered for the discretization of ϕ because the bending force requires

its fourth order derivatives. For the SUPG method, the streamline diffusion parameter is chosen

numerically proportional to the local mesh size, this is τK = ChK/max
{
|u|0,∞,K, tol/hK

}
, where

C is a scaling constant and tol/hK helps to avoid division by zero. To overcome the instability

problems induced by an explicit decoupling, we consider a partitioned implicit strategy based on

a fixed point algorithm, as detailed in Alg. 1.

Algorithm 1 Fluid-membrane coupling

1: n = 0: let ϕ
0 and u0 being given

2: for n = 0, . . . ,N −1 do

3: Initialize un+1,0 = un, ϕ
n+1,0 = ϕ

n

4: while ek < 10−6 do

5: Compute ϕ
n+1,k+1 using un+1,k

6: Compute un+1,k+1, pn+1,k+1 using ϕ
n+1,k+1

7: Compute the error ek = |un+1,k+1 − un+1,k|1,2,Λ/|un+1,k|0,2,Λ + |ϕn+1,k+1 −

ϕ
n+1,k|0,2,Λ/|ϕn+1,k|0,2,Λ

8: end while

9: Update un+1 = un+1,k+1, ϕ
n+1 = ϕ

n+1,k+1

10: end for

IV. NUMERICAL EXAMPLES

A. Example 1: Reversible Vortex - Grid convergence.

Simulations were performed using FEniCSx33. To evaluate the capability of the level set solver

for high-order finite elements, necessary afterwards for an accurate assessment of highly nonlinear
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A Example 1: Reversible Vortex - Grid convergence. IV NUMERICAL EXAMPLES

P4

P2
P1

mesh size h

order 4.6

order 3.7

order 2.4

‖Hε(ϕh)− Hε(πhϕ)‖0,2,Ω

10−110−2

10−1

10−3

10−5

10−7

FIG. 2: Reversible vortex. (Left) Snapshots showing the interface deformations at

t ∈ {0,0.25,0.57, 0.75,0.875,1} with h = 0.01. (Right) Spatial convergence in L2 norm for

high-order finite element approximations.

bending force, we consider a reversible vortex test case featuring large deformations of the inter-

face. The computational domain is Λ = [0,1]2. A circular interface of radius R = 0.15 initially

centered at (0.7,0.7) is stretched into thin filaments which are coiled like a starfish by a vortex

flow field. The deformations are periodic and the stretching of the membrane unravels before the

interface regains its circular shape after a period at t = T . The maximal deformation ψ occur at

t = T/2, with ψ = 3 and T = 1 in numerical computations. Similar 2D and 3D test cases are

widely used to test interface tracking methods. We follow LeVeque’s test34 (Example 9.5) and

consider a velocity field at x= (x,y)T ∈ Λ given by

u(t,x)=
(
−2sin(ψπx)2 sin(ψπy)cos(ψπy)cos(πt/T ),2sin(ψπy)2 sin(ψπx)cos(ψπx)cos(πt/T )

)T
.

The spatial accuracy of the finite element numerical approximations is studied by computing the

errors in L2(Λ) norm on successively refined meshes with respect to an exact reference solution

πhϕ at t = T , where πh represents the Lagrange interpolation operator. Errors are calculated

after one stretching period. For k the degree of the polynomial approximation, the time step

∆t = hk is chosen small enough not to significantly influence the overall accuracy. Fig. 2 reports

the convergence of calculated errors with respect to the mesh size for several polynomial finite

element approximations. Convergence rates are also displayed, showing for instance an almost

second-order accuracy for k = 1 and fifth-order accuracy for k = 4.
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B Example 2: Dynamics of the biomembrane in Newtonian and quasi-Newtonian flows.IV NUMERICAL EXAMPLES

0.05

0.1

0.15

0.2

0.6 0.7 0.8 0.9 1

β = 1

reduced area Ξ2d

θ∗/π

Zhao et al.
Kraus et al.
Salac et al.

Laadhari et al.
Newtonian model

Quasi-Newtonian model

FIG. 3: TT regime: Change in θ
∗/π with respect to Ξ2d for a viscosity ratio β = 1. Comparisons

with results from19 and20 (Re = 10−3, Ca = 100),35 (Ca = 9) and36 (Ca = 10).

0

0.05

0.1

0.15

0.2

0.25

0.3

0.6 0.7 0.8 0.9 1

β = 2.7

reduced area Ξ2d

θ∗/π
Quasi-Newtonian model

Laadhari et al.
Zhao et al.

Kantsler & Steinberg

FIG. 4: TT regime: Change in θ
∗/π with respect to Ξ2d for β = 2.7. Comparison of

non-Newtonian model with results in20,35 and measurements in37.

B. Example 2: Dynamics of the biomembrane in Newtonian and quasi-Newtonian flows.

We first proceed to a quantitative validation with some experimental and numerical results

available in the literature in the case of a purely Newtonian flow. We set υ = 1, a viscosity con-

trast β = 1, Ca= 102 and Re = 9×10−3. More details on the physiological values of the Reynolds

number at the level of RBCs are available in19. The membrane follows a tank-treading type move-

ment, called TT, where it reaches a steady state characterized by a fixed angle of inclination; The

surrounding fluid continues its rotation tangentially to the membrane. We consider different values

of the reduced areas Ξ2d ∈ [0.6,1], and calculate the angle of inclination at equilibrium θ
⋆. Fig. 3

and Fig. 4 plot the change in θ
⋆/π against Ξ2d in both Newtonian and quasi-Newtonian cases for

different values of the viscosity ratio β . The results are compared with those of Kraus et al.36,

Zhao et al.35, Salac et al.19 and Laadhari et al.20, showing good overall consistency. However,

note that the values obtained with υ = 0.7755 fit slightly better compared to those of the Newto-
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B Example 2: Dynamics of the biomembrane in Newtonian and quasi-Newtonian flows.V CONCLUSION

nian model which are a little higher than the other curves. This cannot be confirmed at all, given

the setting of different dimensionless values such as Re and Ca in the different experiments. An

in-depth study is in progress and will be the subject of a forthcoming work.

FIG. 5: TT regime for Ξ2d = 0.68, β = 1, Ca = 4×104 and Re = 9×10−3 at

t ∈
{

0,0.125,0.25,0.5,1,2
}

.

Simulations are now performed using a different ratio β
⋆ = 2.7 in the non-Newtonian case. We

calculate the angle of inclination θ
⋆/π and compare with some numerical35 and experimental37

results available only for larger reduced areas. Fig. 3(right) shows close but slightly higher equi-

librium angles when the shape of the membrane becomes close to a circle. The deviations can be

mainly due to the non-Newtonian model, but also to the different values of the confinement levels

and the boundary conditions used in the different works.

According to an experimental systematic study on individual individual red cells in a simple

shear flow, a change in dynamics occurs when the viscosity ratio exceeds a critical value depending

on the reduced area38. This is the tumbling regime, noted by TB, which is characterized by the

periodic rotation of the membrane around its axis. A well-known empirical model was developed

by Keller and Skalak4. This dynamics was obtained in the simulations with the non-Newtonian

model, see Fig. 5 and Fig. 6 for the snapshots of the TT and TB dynamics obtained with the same

set of parameters but with β = 1 and β = 10, respectively.

V. CONCLUSION

We have presented in this paper a relatively simple method for simulating the dynamics of

an individual red blood cell, or inextensible biological membrane in general, in a surrounding

incompressible non-Newtonian flow that better describes the hemorheology in small capillaries.

We validated our framework using high-order finite element approximations in the case of a

membrane in a simple shear flow. Simulations have shown that the method is capable of capturing

the basic cellular dynamics, namely the well-known tank treading and tumbling motions. This is
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V CONCLUSION

FIG. 6: Snapshots showing a membrane in TB regime for Ξ2d = 0.68, β = 10, Ca = 4×104 and

Re = 9×10−3, at times t ∈
{

0,0.13,0.25,0.5,1.25,2,2.25,2.38,3,4,4.5,4.7
}

, respectively.

part of a larger ongoing work to explore the dynamics of red blood cells in small capillaries, while

accounting for cell elasticity39 in non-Newtonian surrounding flow.
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