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Abstract

The study of the mechanical behaviour of fibre-reinforced electro-active polymers (EAPs) with bend-
ing stiffness is beneficial in engineering for mechanical design and problem solving. However, consti-
tutive models of fibre-reinforced EAPs with fibre bending stiffness do not exist in the literature. Hence,
to enhance the understanding of the mechanical behaviour of fibre-reinforced EAPs with fibre bending
stiffness, the development of a relevant constitutive equation is paramount. In this paper, we develop a
constitutive equation for a non-linear non-polar EAP, reinforced by embedded fibres, in which the elastic
resistance of the fibers to bending is modeled via the classical branches of continuum mechanics without
using the second gradient theory, which assumes the existence of contact torques. In view of this, the
proposed model is simple and somewhat more realistic, in the sense that contact torques do not exist in
non-polar EAPs.

Keywords: fibre-reinforced electro-active polymers, bending stiffness, spectral invariant, non-polar,
hyperelasticity

1 Introduction

Recent research in various fields of science and engineering has led to the development of new materials and
technologies. For instance, the effect of dielectric relaxation of epoxy resin on the dielectric loss of medium-
frequency transformer was investigated in [45]. In [10], a novel one-dimensional V3S4@NC nanofibers for
sodium-ion batteries was proposed. Meanwhile, the physical layer security of uplink NOMA via energy
harvesting jammers was improved in [2]. In another study, the structures and stabilities of carbon chain
clusters influenced by atomic antimony was examined in [41]. Furthermore, Shi et al. integrated redox-
active polymer with MXene for ultra-stable and fast aqueous proton storage [39]. In [46], an analytical
model for the nonlinear buckling responses of confined polyhedral FGP-GPLs lining subjected to crown
point loading in engineering structures was developed.

In this paper, we are interested in the mechanical behavior of fibre-reinforced electro-active polymers
(EAPs) with bending stiffness, which is an important issue in engineering. EAPs are multifunctional ma-
terials that are innovative and smart as they can adapt their physical and mechanical properties as a result
of external stimuli. An EAP deforms under the application of an electric field and it has recently attracted
growing interest because of its potential for use, for example, in biomedical applications, artificial muscles
in robotics and actuators [1].
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Fibre-reinforced composite materials have often been used in recent engineering applications. The rapid
growth in manufacturing industries has led to the need for the improvement of materials in terms of strength,
stiffness, density, and lower cost with improved sustainability. Fibre-reinforced composite materials have
emerged as one of the materials possessing such improvement in properties serving their potential in a va-
riety of applications [3, 15, 38, 47]. The infusion of natural synthetic or natural fibers in the fabrication of
composite materials has revealed significant applications in a variety of fields such as biomedical, automo-
bile, mechanical, construction, marine and aerospace [4, 18, 20, 48]. In biomechanics, some soft tissues can
be modelled as fibre-reinforced composite materials [7, 25, 27]. In modern heavy engineering, the heavy
traditional materials are gradually being replaced by fibre-reinforced polymer composite structures of lower
weight and higher strength. These structures, such as railroads and bridges, are always under the action of
dynamic moving loads caused by the moving vehicular traffic.

Constitutive equations for fibre-reinforced EAPs have recently been developed [29, 30]. However, fibre-
reinforced EAP models that appear in the literature do not consider fibres that resist bending. Hence,
the understanding of the mechanics of fibre-reinforced EAPs, where the fibres resist bending is an impor-
tant issue in engineering. The mechanical behavior of fibre-reinforced EAPs with stiff bending fibres is
significantly different from those that are perfectly flexible [6]. Hence, in view of the above, a rigorous
construction of a mechanical constitutive model, based on the sound theory of continuum mechanics, for
non-polar fibre-reinforced solids, is paramount, and is of valuable interest in engineering designs and would
find many practical applications.

In the case of non-EAP materials, the long history [24, 28, 43] of mechanics of non-polar fiber-reinforced
solids has, in general, significantly enriched and advanced the knowledge of solid mechanics. A boundary
value problem for a non-polar elastic solid reinforced by (finite radius) fibres can be solved using the Finite
Element Method (FEM), if small elements are permittable to mesh the fibres. If we treat the fibres to be an
isotropic solid but have a different material properties from the matrix (material that is not attributable to
the fibers) properties, we can use an inhomogeneous strain energy function

W (λ1, λ2, λ3) (1)

in solving the FEM problem, where λ1, λ2 and λ3 are the pricipal stretches. We note that, due to the finite
radius of the fibres, bending resistance due to changes in the curvature for the fibres, is observed. However,
if the fibre radius is significantly small, meshing the fibres and the matrix can be troublesome and hence it
may not be possible to seek a boundary value solution via the FEM. To overcome this significantly small
radius problem, a FEM solution can be obtained using a transversely elastic strain energy function [43]

W (U ,a) , (2)

where U is the right-stretch tensor and a is the unit preferred vector in the reference configuration. We note
that this transversely isotropic model contains infinitely many purely flexible fibres with zero radius; hence
this model cannot model elastic resistance due to changes in the curvature for the fibres. We emphasize
that the Cauchy stress in both isotropic and transversely isotropic non-EAP models is symmetric and this
is actually observed in a non-polar solid in the absence of a couple stress. To model the effect of elastic
resistance due to changes in the curvature for the fibres, recent models [32, 33, 40, 42] that are framed in
the setting of the non-linear strain-gradient theory or Kirchhoff rod theory [44], were developed. We note
that these second-gradient models characterize the mechanical behaviour of (polar) transversely isotropic
solids with infinitely many purely flexible fibres with zero radius. But, in order to simulate the effect
of fibre bending stiffness on purely flexible fibres with zero radius, the second-gradient non-EAP models
introduce the existence of a couple stress and a non-symmetric Cauchy stress in the constitutive equations;
we must emphasize that both of these stresses are not present on deformations of actual non-polar-EAP
elastic solids reinforced by finite-radius fibres. In general, higher gradient elasticity models are used to
describe mechanical structures at the micro-and nano-scale or to regularize certain ill-posed problems by
means of these higher gradient contributions. Discussion on the effectiveness of higher gradient elasticity
models to mechanically describe continuum solids is still ongoing [8, 9, 21].

Hence, the objective of this paper is to propose a model to simulate the mechanical behaviour of actual non-
polar EAP reinforced by finite- radius fibres, where the contact torque is absent and fibre bending resistance
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is caused by changes in curvature of the fibres. We focus on changes in fibre curvature, since in composite
solids, these changes play an important role in the mechanical behaviour of solids. Since our simulated
model contains infinitely many fibres with zero radius, we exclude the effects due to fibre ’twist’. In fact
Spencer and Soldatos [42] stated that
”In doing this, we exclude effects due to fibre ’splay’ and fibre ’twist’, both of which feature in liquid crystal
theory, but it is plausible that in fibre composite solids the major factor is fibre curvature.”

Please note that our model does not:
(1) Require the existence of contact torques (which are not observed in actual non-polar elastic solids
reinforced by finite-radius fibres).
(2) Introduce higher order differential equations in the corresponding boundary value problem.
Both (1) and (2) complicate the solving of boundary value problems, which is discussed in references[8, 9,
21]. Since our model does not involve (1) and (2), solving EAP boundary value problems is much easier,
analytically and numerically, compared to solving boundary value problems of second-gradient models that
are asscociated with (1) and (2).

Spectral approach [31, 32] is used in the modelling and this is preliminary described in Sections 2 and 4,
where in Section 4 a total energy function contains an electric field and a vector that governs the changes in
the fibre curvature. A prototype of the strain energy is given in Section 5 and boundary value problems to
study the effect of fibre bending resistance are presented in Section 6.

2 Preliminaries

2.1 Deformation

Unless stated otherwise, all subscripts i, j and k assume the values of 1 or 2 or 3 and we do not use the
summation convention. Let y and x denote the position vectors of a solid body particle, respectively, in the
current and reference configurations. The deformation gradient F is spectrally [28] described as follows:

F (λi,vi,ui) =
∂y

∂x
=

3∑
i=1

λivi ⊗ ui , (3)

where λi is a principal stretch, ui is an eigenvector of the right- stretch tensor U = F (λi,ui,ui) and vi
is an eigenvector of the left stretch tensor V = F (λi,vi,vi). We can spectrally express the rotation tensor
R = F (λi = 1,vi,ui) and the right Cauchy-Green tensor C = F (λ2

i ,ui,ui), where F = RU . In this
article, we assume that the effect of mechanical body forces is negligible and only incompressible elastic
solids are considered. Hence, detF = 1, where det indicates the tensor determinant. We only consider
time-independent fields and quasi-static deformations.

2.2 Electrostatics

In the absence of distribution of free charges the simplified forms of the Maxwell equations are [36]

div(d) = 0 , curl(e) = 0 , (4)

where d is the cuurent-configuration electric displacement, e is the current-configuration electric field and,
curl and div are, respectively, the curl and divergence operators with respect to y. The relation between d
and e in vacuum is

d = ε0e , (5)

where ε0 = 8.85× 10−12F/m is the vacuum electric permittivity. The condensed matter relation is

d = ε0e + p , (6)
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where p is the electric polarization.

Let T be the total symmetric Cauchy stress defined in [5]. We assume surface electric charges are absent
and hence, we have, the continuity equations [11, 23]

n · [[d]] = 0, n× [[e]] = 0, Tn = t̂ + TMn, (7)

where n is the unit outward normal vector to the boundary of the deformed body, t̂ is the external me-
chanical traction, [[ ]] denotes the difference of a quantity from outside and inside a body and TM is the
Maxwell stress tensor outside the body in vacuum defined as

TM = d⊗ e− 1

2
(d · e)I. (8)

3 Embedded fibres

We assume the material body consists of a matrix material and fibers. We model this material by considering
a transversely elastic solid with the referential preferred unit direction a(x) and it becomes the vector

b = Fa = %f , % =
√
a ·Ca > 0 , (9)

in the current configuration, where f is a unit vector. In our proposed model, the directional derivative of
the fibre unit vector in the fibre direction, i.e.,

c =
∂f

∂x
a , (10)

plays an important role in modelling elastic resistance due to changes in curvature for the fibres. In view
of this we endow a vector m associated with c (we will make the association clear later) in (10), which is
independent of F , i.e. [32, 33, 37]

m =
1

ι
Λa− 1

ι3
(a ·Λa)C̄a , ι =

√
a · C̄a , (11)

where

C̄ = F̄
T
F̄ , Λ = F̄

T
G− ∂a

∂x
, G =

∂F̄ a

∂x
, (12)

F̄ (x) is the deformation tensor independent of F , i.e., m is not embedded in the matrix, and so in general
its image F̄

−T
m in the current configuration is not directly connected to the deformation of the matrix.

Clearly from (11), we have m ·a = 0. If we let F̄ = F , we then have the association c = F−Tm [32, 33].
To facilitate the process of modelling, we express the vector

m = ρk , ρ =
√
m ·m , (13)

where k is a unit vector with the property a · k = 0.

4 Total energy function

Let W be the total energy. Following the work of [5, 23], we have,

W = Ŵ(a)(U ,a,m, eL) = W(a)(U ,a,k, g, ρ, e) , (14)

where

g =
1

e
eL , e = |eL| > 0 . (15)
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and the Lagrangian electric field eL is defined as eL = F Te [5].

For an incompressible body, the total symmetric Cauchy stress is [5]

T = F
∂Ω

∂F
− pI = 2F

∂Ω

∂C
F T − pI (16)

and the Eulerian electric displacement is

d = −F ∂Ω

∂eL
. (17)

The Lagrangian electric displacement is given as [5]

dL = − ∂Ω

∂eL
, (18)

where dL = F−1d. The Lagrangian fields must satisfy the relations [5]

Curl(eL) = 0 and Div(dL) = 0 , (19)

where Div and Curl are, respectively, the divergence and curl operators with respect to x, associated with
the undeformed configuration.

4.1 Spectral invariants

The total energy function requires the restriction

W = W(a)(U ,a,k, g, ρ, e) = W(a)(QUQT ,Qa,Qk,Qg, ρ, e) , (20)

for every rotation tensor Q, hence it must depend on invariants with respect to the rotation tensor Q.
Recently, attractive, useful and successful spectral invariants have been used in modelling anisotropic bodies
(see for example references [25, 26, 28, 29, 30, 31, 32, 33]) and, in view of this, we characterise W by the
spectral invariants [35]

λi ai = a · ui, bi = k · ui , ci = g · ui ,
3∑
i=1

a2
i = 1 ,

3∑
i=1

b2i = 1 ,

3∑
i=1

c2i = 1 . (21)

and the scalers ρ and e. Hence, we can express

W = W(a)(λi, ai, bi, ci, ρ, e) , (22)

taking note the W(a) must satisfy the P -property described in [26] associated with the coalescence of
principal stretches λi. In view of the 3 constraints in (21), only 11 of the invariants in (22) are independent;
in the case of an incompressible material, only 10 of the invariants are independent due to the constraint
λ1λ2λ3 = 1. In our current model, W is independent of the sign of a,k and g, hence we express

W = W(s)(λi, αi, βi, γi, ρ, e) , αi = a2
i , βi = b2i , γi = c2i . (23)

4.2 Spectral derivative components

The evaluation of stress tensors requires spectral the Lagrangian spectral tensor components of
∂W

∂C
i.e.,(

∂W

∂C

)
ii

=
1

2λi

∂W(s)

∂λi
, (24)

5



(
∂W

∂C

)
ij

=
1

(λ2
i − λ2

j )

{(
∂W(s)

∂αi
−
∂W(s)

∂αj

)
aiaj +

(
∂W(s)

∂βi
−
∂W(s)

∂βj

)
bibj +

(
∂W(s)

∂γi
−
∂W(s)

∂γj

)
cicj

}
,

i 6= j . (25)

The Eulerian description of the total Cauchy stress T for an incompressible body is

T =

3∑
i,j=1

tijvi ⊗ vj , (26)

where

τii = λi
∂W(s)

∂λi
− p , τij = 2λiλj

(
∂W

∂C

)
ij

, i 6= j . (27)

The Lagrangian spectral components for the electric displacement d are:

dL = −∂W
∂eL

= −
3∑
k=1

(dL · uk)uk , (28)

where

∂W

∂eL
=
∂W

∂e
g +

1

e

(
[I − (g ⊗ g)]T

∂W

∂g

)
. (29)

The electric field in the deformed configuration can simply be expressed by

d = −
3∑
k=1

λk(dL · uk)vk . (30)

5 Strain energy prototype

In this section, a prototype total energy function W is proposed. A more general, but complex form of the
total energy function can be constructed following the work of Shariff [34], if required. We propose

W = W(T ) +W(Λ) +W(E) , (31)

where

W(T ) = µ

3∑
i=1

r2
1(λi) + 2µ1

3∑
i=1

αir
2
2(λi) +

κ1

2
(

3∑
i=1

αir3(λi))
2 , (32)

W(Λ) = 2µ2ρ
2

3∑
i=1

βir
2
4(λi) +

κ2

2
ρ4(

3∑
i=1

βir5(λi))
2 + κ3ρ

2[
∑
i=1

αir6(λi)][

3∑
i=1

βir7(λi)] , (33)

and [34]

W(E) =

3∑
i=1

γic0(e)r2
8(λi)− ε0γi

e2

2λ2
i

, (34)
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with the properties [31]

c0(0) = 0 , rα(1) = 0 , r′α(1) = 1 , α = 1, 2, . . . 8 . (35)

We note that µ, µ1, µ2, κ1, κ2, κ3 and c0(e) are ground-state constants and their restrictions are given in
Appendix A. We could also include the following property, when appropriate, rα to represent physical
strain measures with the extreme deformation values

rα(λi →∞) =∞ , rα(λ→ 0) = −∞ . (36)

The energy functions (31) to (34) can be easily extended to construct a more general strain energy function
(see for example [31]), but the total energy function proposed in this Section should suffice to illustrate our
model. From the above and Eqn. (17), it is clear that

d = ε0e− F
∂W(E)

∂eL
p = −F

∂W(E)

∂eL
. (37)

In vacuum, W(E) = 0 and we recover the relation

d = ε0e . (38)

6 Boundary value problem

To illustrate our theory, we consider two simple deformations, pure bending and finite torsion of a right
circular cylinder, where their displacements are known. For boundary value problems, where the displace-
ments are unknown, the construction of solutions are described in Appendix B.

To plot the results in this section, for simplicity, we use

rα(x) = ln(x) , α = 1, 2, . . . 8 , (39)

and the ground-state values

µ = 5kPa , µ1 = 80kPa , κ1 = 0 , (40)

are those associated with skeletal muscle tissue [19, 27]. Since our model is new and there are no experi-
mental values for the following ground-state constants, we use the ad hoc values

µ2 = 10.0kPa , κ1 = κ2 = 0 , κ3 = −100kPa , c0(e) = 0.1ε0e
2 , (41)

to plot the graphs. Take note that the above values satisfy the restrictions given in Appendix A.

6.1 Pure Bending

A deformation of pure bending in plane strain is depicted in Fig. 1, where a sector of a circular annulus
defined by

r = r(x1) , θ = θ(x2) , z = x3 , 0 ≤ x1 ≤ B , − L ≤ x2 ≤ L , −H ≤ x3 ≤ H (42)

is obtained via bending a rectangular slab of incompressible material: Note that (r, θ, z) is the cylindrical
polar coordinate for the current configuration and (x1, x2, x3) is the Cartesian referential coordinate with
the basis {g1, g2, g3 = ez}.

The formula employed here could be used to compare our theory with experiment (for example, a three
point bending test experiment described in reference [17]).
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x1

x2

x1

x2

r

θ

Figure 1: Bending of a rectangular block into a sector of a cylindrical tube.

Figure 2: Radial behaviour of stress σrr. (a) Elastic solid with fibre bending resistance. e0 = 0 V/m. (b)
Elastic solid with no fibre bending resistance. e0 = 0 V/m. (c) Elastic solid with fibre bending resistance.
e0 = 5× 106 V/m. (d) Elastic solid with no fibre bending resistance. e0 = 5× 106 V/m.

In this case,

F = r′er ⊗ g1 + rθ′eθ ⊗ g2 + ez ⊗ g3 . (43)

In view of detF = 1 and the conditions θ(0) = 0 and r(A) = a at the boundary, we obtain

r2 − a2 = 2χx1 , θ =
x2

χ
, χ =

b2 − a2

2B
> 0 , (44)
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Figure 3: Radial behaviour of stress σθθ.(a) Elastic solid with fibre bending resistance. e0 = 0 V/m. (b)
Elastic solid with no fibre bending resistance. e0 = 0 V/m. (c) Elastic solid with fibre bending resistance.
e0 = 5× 106 V/m. (d) Elastic solid with no fibre bending resistance. e0 = 5× 106 V/m.

where r(B) = b. Hence, in view of (3), (43) and (44), we have

λ1 =
χ

r
, λ2 =

r

χ
, λ3 = 1 (45)

and the spectral basis vectors are ui = gi, v1 = er, v2 = eθ and v3 = ez .

We only study the case a = g2 and e =
e0

r
eθ. Hence, eL =

e0

χ
g2, a1 = a3 = 0, a2 = 1 c1 = c3 = 0 and

c2 = 1 and clearly CurleL = 0 is satisfied. If we let F̄ = F , we get

k = −g1 , ρ =
1

r
, b1 = −1 , b2 = b3 = 0 . (46)

The strain energy function is simplified, i.e.

W(T ) = µ

3∑
i=1

r2
1(λi) + 2µ1r

2
2(λ2) +

κ1

2
r2
3(λ2) ,

W(Λ) = 2ρ2µ2r
2
4(λ1) + ρ4κ2

2
r2
5(λ1) + ρ2κ3r6(λ2)r7(λ1) ,

W(E) = c0(e)r2
8(λ2)− ε0e

2

2λ2
2

, W = W(T ) +W(Λ) +W(E) . (47)

The non-zero Cauchy stress components simply becomes

σi = λi
∂W

∂λi
− p , (48)

where σ1 = σrr, σ2 = σθθ and σ3 = σzz are cylindrical components of the Cauchy stress. The Maxwell
stress simply becomes

TM =
ε0e

2

2r2
(−er ⊗ er + eθ ⊗ eθ − ez ⊗ ez) . (49)
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Since σi depends only on r, the equilibrium equation simply becomes

dσrr
dr

+
1

r
(σrr − σθθ) = 0 . (50)

We note that, in view of the Maxwell stress in (49), σrr = −ε0e
2

2b2
at r = b, we then have

σrr = −
∫ b

r

G(y) dy +
ε0e

2

2b2
, rG(r) = λ2

∂W

∂λ2
− λ1

∂W

∂λ1
. (51)

Hence, we can evaluate

p = λ1
∂W

∂λ1
+

∫ b

r

G(y) dy − ε0e
2

2b2
. (52)

The stress-strain relations for σθθ and σzz can now be obtained using the above p. The bending moment

M =

∫ b

a

rσθθ dr (53)

and the normal force

N =

∫ b

a

σθθdr . (54)

BothM and N are derived per unit length in the x3 direction, and applied to a section of constant θ.

In figures 2 and 3, the behaviours of, respectively, the radial and hoop stresses are depicted using
χ

B
= 1

and the material is deformed to
a

B
= 1. It is clear from these figures the magnitude of the stresses is

affected by bending fibre resistance and by the presence of an electric field.

The bending momentM values are;

107.8388439 kPam2 , with fibre bending resistance, e0 = 0 V/m ,

80.72073233 kPam2 , without fibre bending resistance e0 = 0 V/m ,

252.8614021 kPam2 , with fibre bending resistance, e0 = 5× 106 V/m ,

225.7432905 kPam2 , without fibre bending resistance, e0 = 5× 106 V/m . (55)

The normal force N values are;

69.32308513 kPam , with fibre bending resistance, e0 = 0 V/m ,

51.29533089 kPam , without fibre bending resistance e0 = 0 V/m ,

176.7433952 kPam , with fibre bending resistance, e0 = 5× 106 V/m ,

158.7156409 kPam , without fibre bending resistance, e0 = 5× 106 V/m . (56)

Hence, the presence of bending fibre stiffness and an electric field increases the magnitude ofM and N .

We note that

dL = d1(x1)g2 , d1(x1) =
ε0e

λ2
2

− c′0(e)r2
8(λ2) (57)

which implies that DivdL = 0, since the component of dL depends on the variable x1 only.
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Θ

z

r
θ

Figure 4: Torsion and extension of a cylinder

6.2 Torsion and extension of a cylinder

The initial geometry of an incompressible thick-walled circular cylindrical annulus is described by

0 ≤ R ≤ A, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (58)

where R, Θ and Z are reference polar coordinates with the corresponding basis BR = {ER,EΘ,EZ}.
The boundary value problem illustrated here could be used in an experiment (see, for example, reference
[16]) to verify our theoretical predictions.

The deformation is depicted in Fig. 4 and is described by

r = λ
− 1

2
z R, θ = Θ + λzτZ, z = λzZ, (59)

where τ is the amount of torsional twist per unit deformed length and λz is the axial stretch. In the above
formulation, r, θ and z are cylindrical polar coordinates in the deformed configuration with the correspond-
ing basis BC = {er, eθ, ez}. Here, we have allowed er = ER, eθ = EΘ and ez = EZ . The deformation
gradient is

F = λ−1/2
z er ⊗ER + λ−1/2

z eθ ⊗EΘ + λzγeθ ⊗EZ + λzez ⊗EZ , (60)

where γ = rτ and in this paper, we only consider λz ≥ 1. The Lagrangian principal directions are:

u1 = ER , u2 = cEΘ + sEZ , u3 = −sEΘ + cEZ , (61)
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where

c = cos(φ) =
2√

2(γ̂2 + 4) + 2γ̂
√
γ̂2 + 4

, s = sin(φ) =
γ̂ +

√
γ̂2 + 4√

2(γ̂2 + 4) + 2γ̂
√
γ̂2 + 4

, (62)

with

π

4
≤
π − tan−1

(
1√
λ3
z−1

)
2

≤ φ < π

2
, γ̂ =

λ3
zγ

2 + λ3
z − 1

λ
3
2
z γ

≥ 0 , c2 − s2 = −γ̂cs . (63)

In the case of pure torsion, λz = 1 and we have γ̂ = γ. The principal stretches for a combined extension
and torsion deformation are

λ1 =
1

λ
1
2
z

, λ2 =

√
1

λz
+
sγ
√
λz
c

, λ3 =

√
1

λz
− cγ

√
λz
s

. (64)

In this section, for simplicity, we only consider the cases when a = Ez and eL = eER, where e is a

Figure 5: Torque, M vs τ . (a) Elastic solid with fibre bending stiffness. (b) Elastic solid with no fibre
bending stiffness. λz = 1.5. The torque is independent of the electric field eL = eER.

constant. Hence, a1 = 0, a2 = s, a3 = c, c2 = c3 = 0 and c1 = 1. Clearly, the relation CurleL = 0 is
satisfied. If we let F̄ = F and using

Gradb =
∂b

∂R
⊗ER +

1

R

∂b

∂Θ
⊗EΘ +

∂b

∂Z
⊗EZ , (65)

we obtain

k = −ER , ρ =
λ3
zγτ√

λ2
z(1 + γ2)

, b1 = −1 , b2 = b3 = 0 . (66)
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Figure 6: Force per unit area N vs τ . (a) Elastic solid without fibre bending resistance. e = 0 V/m.
(b) Elastic solid without fibre bending resistance. e = 5 × 106 V/m. (c) Elastic solid with fibre bending
resistance. e = 0 V/m. (d) Elastic solid with fibre bending resistance. e = 5× 106 V/m. λz = 1.5

The strain energy function then takes the form

W(T ) = µ

3∑
i=1

r2
1(λi) + 2µ1[s2r2

2(λ2) + c2r2
2(λ3)] +

κ1

2
[s2r3(λ2) + c2r3(λ3)]2 ,

W(Λ) = 2ρ2µ2r
2
4(λ1) + ρ4κ2

2
r2
5(λ1) + ρ2κ3[s2r6(λ2) + c2r6(λ3)]r7(λ1) ,

W(E) = c0(e)r2
8(λ1)− ε0e

2

2λ2
1

. (67)

The Maxwell stress

TM =
ε0λze

2

2
(er ⊗ er − eθ ⊗ eθ + ez ⊗ ez) . (68)

The total Cauchy stress

T = 2F
∂W

∂C
F T − pI . (69)

In view of a ≡ [0, 0, 1]T , we have a1 = 0, a2 = s and a3 = c and

T = σrrer ⊗ er + σθθeθ ⊗ eθ + σzzez ⊗ ez + σzθ(ez ⊗ eθ + eθ ⊗ ez) , (70)

where

σθθ = 2

[
l2c

2 + l3s
2 − 2l4cs

λz
+ 2
√
λzγ((l2 − l3)cs+ l4(c2 − s2)) + λ2

zγ
2(l2s

2 + l3c
2 + 2l4cs)

]
− p,

σzθ = 2
[√

λz((l2 − l3)cs+ l4(c2 − s2)) + λ2
zγ(l2s

2 + l3c
2 + 2l4cs)

]
,

σzz = 2λ2
z

(
l2s

2 + l3c
2 + 2l4cs

)
− p , σrr =

2l1
λz
− p , (71)
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where

li =

(
∂W

∂C

)
ii

, i = 1, 2, 3 , l4 =

(
∂W

∂C

)
23

. (72)

The normal force per unit deformed area N and the torque per unit deformed areaM applied at the ends of
the cylinder are as follows:

N =
2

a2

∫ a

0

σzzr dr , M =
2

a2

∫ a

0

σzθr
2 dr , a =

A√
λz

. (73)

To remove p in (73)1, we use the equilibrium relation

σrr + σθθ =
1

r

d(r2σrr)

dr
. (74)

and re-expressed (73)1 as

N =
1

a2

∫ a

0

(2σzz − σrr − σθθ)r dr +
ε0λze

2

2
. (75)

It is clear from Fig. 5 that, for an axial stretch λz = 1.5, we require more torque to twist an elastic
solid cylinder with fibre bending stiffness and the torque is independent of the electric field eL = eER.
However, in the case of the normal force (see Fig. 6), the presence of an electric field and fibre bending
stiffness, increases the magnitude of the normal force and changes its behaviour.

Since W(E) depends only on the constant principal stretch λ1 (see Eqn. (67)3), it is clear that the property
DivdL = 0 is satisfied.

7 Conclusion

We have modelled elastic resistance due to changes in the curvature of the fibres without using the second
gradient theory. In view of this, our proposed constitutive equation is simpler (as shown in Sections 4 and
5) than the second-gradient constitutive equations given in the literature; solving boundary value problems
using our model is also simpler as exemplified in Section 6. Our model does not contain contact torques
(which is required in a second gradient model) and hence the proposed model is more realistic in the
sense that contact torques do not exist in deformations of non-polar carbon fiber-reinforced EAPs. Our
constitutive equation uses recently developed spectral invariants (see Section 4.1) that are attractive and
useful for experimental designs. The boundary value problem results in Section 6 indicate that our model
manage to simulate fibre bending stiffness. In the near future, stable numerical decoupling strategies will
be developed, whereas a level set description can be used to model the fibre direction [12, 13, 14]. FEM
solutions of the proposed model will be obtained and we will extend this model to EAPs that are reinforced
with a family of two fibres.
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Appendix A

The importance of strong ellipticity is explained in [22]. In this paper, we restrict the material constants
given in Section 5 using the following strong ellipticity condition in the incompressible reference configu-
ration (F = I) [22]:
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Let m and n be unit vectors with the condition m · n = 0 [22]. The strong ellipticity condition

m · [Q(n)m] > 0 , (A1)

where the Cartesian components of Q(n) are

(Q(n))ij =

3∑
p,q=1

(
∂2W

∂F 2

)
piqj

npnq , (A2)

and ni is a Cartesian component of n. Following the work of Shariff et al. [29], in view of (A2) and (31),
we obtain

Q(n) = Q1(n) + Q2(n) + Q3(n) + Q4(n) + Q5(n) , (A3)

where

Q1(n) = µ(I + n⊗ n) + k1An⊗An + µ1(An⊗ n + n⊗An + (n ·An)I + A) ,

Q2(n) = k2ρ
2(Kn⊗Kn) + k3ρ

2(An⊗Kn + Kn⊗An) ,

Q3(n) = µ2ρ
2(Kn⊗ n + n⊗Kn + (n ·Kn)I + K) ,

Q4(n) =
c0(e)

2
[Gn⊗ n + n⊗Gn + (n ·Gn))I + G] ,

Q5(n) = −ε0e2(n⊗Gn + Gn⊗ n + G) , (A4)

A = a⊗ a , K = k ⊗ k , G = g ⊗ g . (A5)

We only consider the case for m and n in a plane, since in Section 6, the boundary value problems can be
considered as two dimensional. In view that at F = I , ui is arbitrary, we assume ui = gi.

If we consider a material, where k1 = k2 = k3 = 0, the necessary and sufficient condition for (A1) is

b1 > 0 and 4b1b2 > b3 , (A6)

where

b1 = µ+ µ1(α1 + α2) + µ2ρ
2(β1 + β2) +

c0(e)

2
(γ1 + γ2)− ε0e

2γ2 ,

b2 = µ+ µ1(α1 + α2) + µ2ρ
2(β1 + β2) +

c0(e)

2
(γ1 + γ2)− ε0e

2γ1 ,

b3 = 2ε0e
2c1c2 . (A7)

In the case where k1, k2 and k3 have none zero values, the inequalities

k1 > 0 , k1k2ρ
2 − k2

3ρ
4 > 0 (A8)

and those given (A6) ensure that (A1) is satisfied.

Appendix B

Let dα, α = 0, 1, . . . be approximate values of d that are obtained via the description below. If the defor-
mation is not known, as a first iteration, we first solve the boundary value problem (BVP) using

W = W(T ) +W(E) (B1)
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and this boundary value problem solution is used to evaluate the first approximation d0. We then solve the
BVP via the following iteration:
For i = 0, 1, . . .
Solve the BVP using di and

W = W(T ) +W(Λ) +W(E) . (B2)

Obtain di+1 from the solution of the BVP.
If ‖di+1 − di‖ < tolerance. Stop. We consider this is the final solution,
else
Continue with the iteration
endif
Note that, ‖ • ‖ is the Euclidean norm and we assume that the above iteration converges.

Data availability

All data generated or analysed during this study are included in this published article [and its supplementary
information files].
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