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Abstract

In this paper, we propose a variational data assimilation approach for including data measurements in the simula-
tion of the mobility of fluorescently labeled molecules in the yeast endoplasmic reticulum. The modeling framework
aims to provide numerical evidence for compartmentalization in the endoplasmic reticulum. Experimental data
is collected and an optimal control problem is formulated as a regularized inverse problem. To our knowledge,
this is the first attempt to introduce an optimization formulation constrained by partial differential equations to
study the kinetics of fluorescently labeled molecules in budding yeast. We derive the optimality conditions and
use an Optimize-then-Discretize approach. A gradient descent algorithm allows accurate estimation of unknown
key parameters in different cellular compartments. The numerical results support the empirical barrier index
theory suggesting the presence of a physical diffusion barrier that compartmentalizes the endoplasmic reticulum
membrane by limiting the exchange of proteins between the mother and its growing bud. We report several
numerical experiments on real data and geometry, with the aim of illustrating the accuracy and efficiency of the
method. Furthermore, a relationship between the size ratio of mother and bud compartments and the barrier
index ratio is provided.

1 Introduction

In budding yeast cells, a small daughter cell emerges from the mother cell, which can produce nearly 20 − 50 reju-
venated daughters before it dies. The endoplasmic reticulum, referred to as ER, of the budding yeast cell is made
up of membranous tubules and sheet-like cisterns [Moor, 1967]. The principles underlying the anisotropic protein
exchange in budding yeast have been the subject of several experimental studies showing that this is not due to
the geometric organization of the ER, see [Puhka et al., 2007, Dayel et al., 1999, Lippincott-Schwartz et al., 2001,
Lippencott-Schwartz et al., 2003]. The endoplasmic reticulum membrane is composed of morphologically and func-
tionally diverse domains, such as the rough ER, the smooth ER and the nuclear envelope, whose distinction is based
on the contribution of several proteins [English and Voeltz, 2013]. The membrane can be divided into large com-
partments roughly corresponding to future daughter cells, covering the mother compartment Γm which includes the
nuclear envelope and is larger than the bud compartment Γb; The bud neck area Γr, however, has a sheet morphology
instead of tubules [English and Voeltz, 2013], see Fig.1. In budding yeast cells as well as in a broad spectrum of
eukaryotes [Caudron and Barral, 2009], experimental studies have established that the ER membrane is physically
continuous throughout the cell but that a lateral diffusion barrier may exist at the level of the bud neck and compart-
mentalize the membrane into an anterior and a posterior domain by limiting the exchange of ER proteins between
these two domains. See e.g. [Puhka et al., 2007, West et al., 2011]. From a biological point of view, the biologists
suggested that the barrier could represent a specialized lipid domain in the cortical ER membrane at the bud neck
with a different composition from the rest of the ER.

Studying the mobility of fluorescently tagged molecules in the ER membrane can provide biologists with important
insights into the cellular function and organization. The Fluorescence Loss In Photobleaching technique, referred
to as FLIP, is a fluorescence microscopy technique used in the laboratory to measure the mobility and molecular
dynamics of proteins in living cells. It consists of repeatedly exposing mobile fluorescent molecules in a defined area
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Figure 1: Confocal images of FLIP experiments applied to mother (top) or bud (bottom) domains expressing the
membrane marker Sec61-GFP. The gray bars indicate the first pre-bleached images, while the black bars indicate
snapshots at specific instants of repeated bleaching in the rest of the experiment. Photobleached areas are highlighted
by white rectangles. (Right) Segmented geometries showing: Γm (green), Γb (yellow), Γr (red) and photobleached
areas Γ1 ∈ Γm (top, blue) or G2 ∈ Γb (bottom, blue).

of interest to an intense light pulse over time by a high-intensity laser beam, thus inducing irreversible photochemical
bleaching of this area, see [Clay et al., 2014, Lippencott-Schwartz et al., 2003]. Due to molecular mobility, an almost
uniform decrease in fluorescence signal is observed over time throughout the membrane and is proportional to the
ER protein concentration. Areas disconnected from the photobleached area should however continue to fluoresce.
The rate at which fluorescence intensity changes after bleaching can provide experimenters with information about
the movement of bleached molecules and the properties of surface diffusion in a particular region of a living cell. We
notice that the amount of fluorescence measured after bleaching in each cell compartment is always normalized to
the amount before bleaching.

Intriguingly, several experimental studies have shown that the kinetics of membrane proteins are very slow between
the mother and bud compartments compared to the kinetics within each region where the rates of fluorescence loss are
comparable. Indeed, applying FLIP in Γm results in rapid depletion of fluorescence signal in Γm, while fluorescence
is lost only slowly in Γb; Conversely, applying FLIP in Γb leads to rapid photobleaching of the marker in Γb but
not in Γm [Clay et al., 2014]. Accordingly, biologists rationalize that although the ER is physically continuous,
its membrane should be compartmentalized, suggesting the presence of a barrier between the different membrane
compartments, where protein diffusion is restricted somewhere [Luedeke et al., 2005].

If confirmed, this theory will have a major role in maintaining and possibly optimizing the life expectancy
of nascent cells. In fact, daughter cells are born with a full life expectancy, while parent cells age after each
cell division. It has been shown in the state of the art that ER stress triggers mechanisms that age yeast cells.
Interestingly, compartmentalization may play a key role in retaining damage and aging factors between mothers
and renewing cells by preventing the aging-causing stresses from entering the daughter cells [Tabas and Ron, 2011,
Shcheprova et al., 2008, Caudron and Barral, 2009]. This remains a very thorny area of research where several
elements remain unclear. To date, it remains challenging to prove and elucidate the biological relevance of such
barriers. To numerically study the properties of molecular diffusion and compartmentalization on the ER membrane,
we first perform several FLIP experiments in the laboratory using confocal microscopy [Clay et al., 2014]. In each
FLIP experiment, we collected pointwise measurement data of the total amount of fluorescence separately in each
cell compartment after photobleaching and at specific time instants. The experimental data will be used in the
mathematical modeling framework detailed later. The data are also made available as supplementary material.

Numerical simulation tools based on mathematical modeling using optimal control have the potential to fur-
ther investigate the aforementioned diffusion barrier theory. Optimal control problems governed by convection or
convection-diffusion equations play an important role in many biomedical and engineering applications, see e.g
[Douglas and Russell, 1982, Martínez et al., 2000, Zhou and Yan, 2010, Zhu and Zeng, 2003, Kim and Park, 2008,
Hogea et al., 2008, Jiang and Zhang, 2000, Lenhart and Workman, 2007, Garvie and Trenchea, 2007]. Data assim-
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ilation formalism represents an appropriate framework for estimating model parameters, where the problem is for-
mulated as a PDE-constrained optimization so that the key parameters maximize a performance criterion subject
to an appropriate set of constraints. An appropriate cost functional measuring the discrepancy between the numer-
ical solutions and the experimental data is minimized, while the model parameters represent the control variables
that allow the observations to be "best approximated" in some sense [Gunzburger, 2002, Liao et al., 2008]. The
first-order necessary conditions for optimality, called Karush-Kuhn-Tucker conditions, enable to derive an optimality
system composed by "the state problem", "the adjoint problem" and "the inversion equations". In the existing
literature, Lagrange finite element discretizations of optimal control problems have been widely used in such nu-
merical frameworks. There have been several theoretical analyzes and contributions to numerical algorithms for
various applications, see e.g [Becker and Vexler, 2007, Ruo et al., 2002, Yan and Zhou, 2008, Yan and Zhou, 2009,
Khaksar-E Oshagh and Shamsi, 2017, Hollis et al., 1987, Garvie and Trenchea, 2014, Casas et al., 2008, Hoppe and Neitzel, 2022,
Zhou and Yan, 2010, Yücel et al., 2015]. Moreover, an extensive literature on the topic of numerical methods for the
optimal control of PDEs can be found in [Betts, 2020, Mills, 1983, Kelley, 1999].

In this paper, we present a deterministic mathematical modeling framework to estimate the membrane diffusion
parameters using optimal control theory and numerically explore the barrier theory in yeast cells. This is part of an
ongoing work to better understand the mobility of ER proteins in different biological cells, while considering both
more accurate mathematical models and uncertainty quantification in solutions. The outline of this article is as
follows. In section 2, we provide the mathematical framework of the transient optimal control problem and derive
first-order optimality conditions. We present in the section 3 the numerical method and the algorithm. Section 4 is
devoted to the numerical experiments and exploration of the diffusion barrier theory.
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Figure 2: Experimental data showing the fluorescence signal decay over time in mother and bud compartments
after an average of twenty FLIP experiments. Photobleaching is either applied to Γ1 (left) or Γ2 (right). Original
fluorescence intensity before bleaching is set to 100% in each compartment. Mean ± SD.

2 Mathematical setting

In this section, we present the mathematical framework of the data-driven model describing the dynamics of fluores-
cently labeled molecules on the yeast ER membrane. The acquisition of experimental data is briefly described.

2.1 Data acquisition

A series of FLIP experiments, using time-lapse laser-scanning confocal microscopy expressing the membrane marker
Sec61-GFP, allows the collection of experimental data. The experiments were performed at an ambient temperature
of 23 degrees Celsius as described in [Clay et al., 2014], with some modifications as detailed in the following. Cells are
imaged on the LSM 780 (Carl Zeiss, Jena, Germany) confocal microscope, while ZEN 2011 software (Carl Zeiss) is
used to control the microscope. Photobleaching is applied with 100 iterations at a laser power of 100%. All intensity
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values were normalized to the total cell intensity and set to the value of 100% at the start of each experiment. In each
FLIP experiment, pointwise measurement data of the total amount of fluorescence are collected separately in each
cell compartment after photobleaching and at specific time instants. Mean values and standard deviations (SD) are
calculated from repeated experiments. Figure 1 (left) shows a budding yeast cell expressing the GFP-HDEL marker
through serial optical sections, in which images were processed using the software ImageJ 1.49g (National Institutes
of Health).

To investigate the diffusion barrier, fluorescence signal measurement data is collected from two different sets of
FLIP experiments. In the first series of experiments, photobleaching is applied in the mother cortex on Γ1 ⊂ Γm,
while it is applied to the bud compartment on Γ2 ⊂ Γb in the second series of experiments, see Fig 1. Fig 2 reports
the decay the amount of fluorescence signal over time in the mother and bud compartments. Each experiment was
repeated on average twenty times and the error bars indicate the standard deviation of the data collected.

For the numerical computations, a realistic ER geometry, referred to as Γ, is segmented based on serial optical
sections through a yeast cell. Let Th be partition of Γ consisting of geometrically conforming open simplicial elements
K (triangles), such that Γ = ∪

K∈Th

. Several mesh tools are used to build, improve mesh quality, and avoid badly

stretched mesh elements. The initially segmented surface mesh in STL format is repaired and smoothed locally using
MeshLab1 and the modules for mesh optimization in Netfabb2. We also rely on Autodesk Maya3 for mesh quality
improvement. Finally, the unstructured triangular mesh is remeshed and optimized using the Frontal algorithm
of Gmsh4, see more details in [Laadhari and Székely, 2017, Laadhari and Székely, 2017]. Fig. 1 shows a segmented
mesh of the ER membrane with 110′760 triangular elements.

2.2 Direct problem

FLIP experiments have a timescale of minutes, while the most relevant dynamic process is fluorescent protein drain
due to photobleaching. We assume, as in so many biological situations, that the fluorescently labeled molecules are
free. Therefore, the FLIP recovery of the reporter protein reflects a dominant time-resolved pure surface diffusion
scenario.

Let us consider a sufficiently smooth, orientable and closed ER surface Γ ⊂ R3, with an outward facing normal
n. Let (0, T ) represent the time period of the experiment and note Γi,T = (0, T )× Γi with an index i ∈ {m, b}. Let
u1 and u2 be the unknown protein concentration fields on Γ at time t ∈ (0, T ) respectively for the series of FLIP
experiments described above, i.e. when photobleaching is applied to G1 and Γ2, respectively.

The optimal control formalism allows to estimate the key parameters of the model of unknown values. Indeed, the
set of control variables µm , µb and µr represent the surface diffusion parameters of the reporter protein respectively
in the mother, bud and bud neck zones. We denote by χi the characteristic function which serves as an indicator of
the surface Γi, with i ∈ {1, 2,m, r, b}. The total diffusion is then expressed as µtot = µmχm + µbχb + µrχr.

Essential boundary conditions must be prescribed on ∂Γ1 in the first set of experiments and on ∂Γ2 when photo-
bleaching is applied to the bud. To allow the use of the same finite element mesh in both sets of FLIP experiments
and avoid further mesh manipulations on the boundaries, we consider a penalty method such as a penalty param-
eter 1/ε helps maintain zero concentration in bleached areas, see e.g. [Perić and Owen, 1992, Janela, J et al., 2005,
Laadhari and Quarteroni, 2016, Astorino et al., 2012] for other applications of penalty methods. We will pay atten-
tion to the setting of the penalty parameter because a choice of too large penalty can deteriorate the conditioning of
the resulting linear system and induce numerical instabilities, see for example [Laadhari and Székely, 2017].

Moreover, we assume pointwise bounds on key parameters to avoid unphysical values during the optimization
process. We consider an admissible set of parameters

Uad =
{

(µm, µb, µr) ∈ R3 : 0 < µm 6 A, 0 < µb 6 B, 0 < µr 6 C
}
,

where A,B and C are fixed values. Let I represent the identity tensor. For an arbitrary and sufficiently regular scalar
function φ and vector v, we introduce the surface gradient, surface divergence, and Laplace-Beltrami operators as
follows:

1MeshLab - http://meshlab.sourceforge.net
2Netfabb - http://www.netfabb.com
3Maya - http://www.autodesk.com/products/maya
4Gmsh - http://www.geuz.org/gmsh
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∇Γφ = (I− n⊗ n)∇φ = ∇φ− (n.∇φ) n,

divΓv = (I− n⊗ n) : ∇v = divv − ((∇v)n).n,

∆Γφ = divΓ (∇Γφ) ,

where the tensorial product of two vectors is denoted ⊗, and the two times contracted product between tensors is
denoted by the semicolon. They correspond to the two-dimensional operators evaluated in the tangent plane of Γ.
The projector tensor I − n ⊗ n has zero eigenvalue, i.e. (I − n ⊗ n)n = 0, leading to non-diffusion in the direction
normal to the surface. Equipped with the initial conditions u1,0 and u2,0, the forward problem reads:
SP(u1, u2) : For given µm, µb, µr belonging to Uad, find u1 and u2 such that

∂u1

∂t
− divΓ ((µmχm + µbχb + µrχr)∇Γu1) +

1

ε
u1χ1 = 0 in (0, T )× Γ, (2.1a)

∂u2

∂t
− divΓ ((µmχm + µbχb + µrχr)∇Γu2) +

1

ε
u2χ2 = 0 in (0, T )× Γ, (2.1b)

u1(t = 0, ·) = u1,0(·) in Γ, (2.1c)
u2(t = 0, ·) = u2,0(·) in Γ. (2.1d)

We use the so-called optimize-then-discretize approach rather than the discretize-then-optimize approach. Indeed,
the optimality conditions will first be derived and then discretized after writing the variational formulation.

2.3 Inverse problem and parameter identification

The data collection framework provides experimental measurements of fluorescence loss kinetics separately in each
cellular compartment at a discrete set of time points throughout the interval (0, T ), such that the averaged protein
concentration in each compartment is normalized to the concentration before photobleaching. The spatiotemporal
evolution of the fluorescence decay cannot be provided by the experimental setting. We first proceed with a nonlinear
least-squares curve fitting of the experimental data of the total amount of fluorescence over time, as depicted in Fig.
2.

Let Fm,1(t) = exp
(
−9.71× 10−2t0.526

)
and Fb,1(t) = exp

(
−2.10× 10−3t

)
be the time evolution functions

of fluorescence loss in Γm and Γb, respectively, obtained by fitting after averaging twenty FLIP experiments in
which photobleaching is applied to the mother at Γ1. Similarly, Fm,2(t) = exp

(
−8.50× 10−3t0.758

)
and Fb,2(t) =

exp
(
−2.48× 10−1t0.352

)
denote the time evolution functions of fluorescence decay in Γm and Γb, respectively, ob-

tained by fitting after averaging twenty FLIP experiments in which photobleaching is applied at Γ2.

The inverse problem consists in finding the optimal parameters µ?m, µ?b , and µ
?
r such that the averaging solutions of

the direct problem SP(u?1, u
?
2) match as closely as possible the target averaging concentrations in each compartment.

For t ∈ (0, T ), l ∈ {m, b} and i ∈ {1, 2}, and given the curve fitting functions Fl,i(t), the optimization problem is
expressed as:

Find optimal parameters (µ?m, µ
?
b , µ

?
r) = arg inf

µm,µb,µr∈Uad

J
(
u1, u2; µm, µb, µr

)
,

subject to the forward problem SP (2.1a-2.1d) as a constraint. (2.2)

The cost functional J is constructed by matching the temporal evolution of the average concentration predicted
by the model in each cell compartment with the corresponding target experimental measurements. It depends on
both the state variables and the controls and is expressed as:

J (u1, u2;µm, µb, µr) =
∑

i=1,2

αm,i
2

(∫ T

0

∫

Γm

ui(t,x)−
∫ T

0

Fm,i(t)

∫

Γm

u1,0(x)

)2

+
∑

i=1,2

αb,i
2

(∫ T

0

∫

Γb

ui(t,x)−
∫ T

0

Fb,i(t)

∫

Γb

u2,0(x)

)2

+
∑

i=1,2

γm,i
2

(∫

Γm

ui(T,x)− Fm,i(T )

∫

Γm

u1,0(x)

)2

+
∑

i=1,2

γb,i
2

(∫

Γb

ui(T,x)− Fb,i(T )

∫

Γb

u2,0(x)

)2
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+
δ

2

∣∣µm − µb
∣∣2 +

δm
2
µ2
m +

δb
2
µ2
b +

δr
2
µ2
r. (2.3)

The terms weighted by ας,i, with ς ∈ {m, b} and i ∈ {1, 2}, measure the mismatch between the solution numerical
and target data throughout the time interval (0, T ). However, the terms weighted by γς,i, with ς ∈ {m, b} and
i ∈ {1, 2}, measure the discrepancy at the final instant t = T and lead to an optimal control with the desired states
only at this instant. An appropriate choice of these weights, possibly zero, allows more emphasis to be placed on the
solutions corresponding to the targets either throughout the duration of the experiment or at the end time, which
can also be replaced by any other particular instant in (0, T ). The δ-weighted term helps account for the expectation
of biologists that similar protein diffusion rates are expected in the mother and bud compartments. Finally, the
terms weighted with δj , with j ∈ {m, b, r}, are the Tykhonov regularization used to cope with the possibly ill-
posed character of the inverse problem in the sense of Hadamard and thwart the tendency of controls to become
locally unlimited. See e.g. [Tikhonov et al., 1995, Engl et al., 2000] for a description of the mathematical theory
of regularization methods. A more in-depth discussion on the choice of the regularization parameter is available in
[Vogel, 2002] but is outside the scope of this work. Remark that the weights in the objective functional helps to put
more emphasis on some components with respect to the other components. In practice, we either choose ας,i = 0 or
γς,i = 0, with ς ∈ {m, b} and i ∈ {1, 2}. In the sequel, the dependence on x and t will be omitted to alleviate the
notations.

To derive the Karush-Kuhn-Tucker optimality conditions, we introduce the adjoint variables v1(t,x) and v2(t,x)
of the corresponding state variables u1(t,x) and u2(t,x), respectively. The associated Lagrangian functional is
expressed as:

L
(
ui∈{1,2}; vi∈{1,2};µj∈{m,b,r}

)
= J

(
ui∈{1,2};µj∈{m,b,r}

)

−
∑

i∈{1,2}

(∫

ΓT

∂ui
dt

vi +

∫

ΓT

(µmχm + µbχb + µrχr)∇Γui ·∇Γvi +

∫

ΓT

1

ε
χiuivi

)
.

(2.4)

The first-order optimality conditions are found by imposing the stationarity of the Lagrangian functional with respect
to the adjoint, state, and inversion variables, respectively.
Let DL [ψ, δψ] be the directional derivative of L at ψ along the direction δψ. The stationarity of the Lagrangian
functional with respect to the adjoint variables DL

[
vi∈{1,2}, δv

]
= 0 gives the direct problem SP (2.1a-2.1b). The

adjoint system is obtained by imposing the stationarity of the Lagrangian functional with respect to the state
variables, i.e. DL

[
ui∈{1,2}, δu

]
= 0. The adjoint equations read:

AP (v1, v2): Given the state variables u1 and u2 and the control variables µm, µb, µr ∈ Uad, find v1 and v2 such
that

−∂v1

∂t
− divΓ ((µmχm + µbχb + µrχr)∇Γv1) +

1

ε
v1χ1 =

∑

ς=m,b

∑

j=1,2

ας,j

(∫ T

0

∫

Γς

u1 −
∫ T

0

∫

Γς

Fς,ju1,0

)
χς , in (0, T )× Γ,(2.5a)

−∂v2

∂t
− divΓ ((µmχm + µbχb + µrχr)∇Γv2) +

1

ε
v2χ2 =

∑

ς=m,b

∑

j=1,2

ας,j

(∫ T

0

∫

Γς

u2 −
∫ T

0

∫

Γς

Fς,ju2,0

)
χς , in (0, T )× Γ,(2.5b)

v1(t = T, ·) =
∑

ς=m,b

∑

j=1,2

γς,j

(∫

Γς

u1(T, ·)− Fς,j(T )

∫

Γς

u1,0

)
χς , in Γ,(2.5c)

v2(t = T, ·) =
∑

ς=m,b

∑

j=1,2

γς,j

(∫

Γς

u2(T, ·)− Fς,j(T )

∫

Γς

u2,0

)
χς , in Γ.(2.5d)

Remark that the adjoint equations (2.5a) and (2.5b) are solved backwards in time, which therefore requires
terminal conditions (2.5c) and (2.5d) instead of initial conditions.

For given a, b, x ∈ R, let π[a,b]{x} = max
(
min (x, b) , a

)
be the projection of x on the interval [a, b]. By imposing

the stationarity of the Lagrangian with respect to the inversion parameters, i.e. DL
[
µj∈{m,b,r}, δµ

]
= 0, the inver-

sion equations provide an explicit characterization of the the optimal controls as follows:
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Given the state variables u1 and u2 and the adjoint variables v1 and v2, the optimal control variables read:

µ?m = π[0,A]





δb
δδm + δb(δ + δm)

∑

i=1,2

∫ T

0

∫

Γm

∇Γui ·∇Γvi +
δ

δδm + δb(δ + δm)

∑

ς=m,b

∑

i=1,2

∫ T

0

∫

Γς

∇Γui ·∇Γvi



 ,(2.6a)

µ?b = π[0,B]




δ + δm
δ

µ?m −
1

δ

∑

i=1,2

∫ T

0

∫

Γm

∇Γui ·∇Γvi



 , (2.6b)

µ?r = π[0,C]





1

δr

∑

i=1,2

∫ T

0

∫

Γr

∇Γui ·∇Γvi



 . (2.6c)

From a numerical point of view, we rather opted for the use of a gradient optimization algorithm instead of an
exact evaluation of the control parameters. This turned out to be more stable but requires the evaluation of the
Lagrangian gradient against the control variables as detailed afterwards.

3 Numerical approximation

In this section, we describe the solution method based on a second-order time discretization and the numerical
algorithm. Let us divide [0, T ] into N + 1 subintervals [tn, tn+1), with n = 0, · · · , N of constant step ∆t. For any
n > 1, we denote by un1 , u

n
2 , v

n
1 and vn2 the approximations of u1, u2, v1 and v2 at time step n , respectively. We

apply a gradient descent algorithm with an adapted step length yielding a sequence of approximations to the optimal
solutions and optimal key parameters. For each iteration k > 0 of the gradient method, we solve the forward and
inverse problems SP and AP using a fully implicit scheme.

For any n ∈ [1, N + 1] and k > 0, the approximations of the state unknowns uk,n1 and uk,n2 are computed by
induction, using values at previous time steps. Similarly, for any n ∈ [0, N ], the adjoint unknowns vk,n1 and vk,n2

are computed by induction, using values at next time steps. For i ∈ {1, 2}, the scheme is bootstrapped by initial
conditions (2.1c-2.1d) u−1

i = u0
i = ui,0 and terminal conditions (2.5c-2.5d) vN+2

i = vN+1
i = vi(T ), where u−1

i and
vN+2
i only stand for convenient notations.

For each iteration k of the gradient method, the second-order backward differentiation formula, referred to as
BDF2, is used for the time derivative terms. For any n ∈ [0, N ] and k > 0, and given the control variables µkj with
j ∈ {m, b, r}, the state unknowns uk,n+1

i with i ∈ {1, 2} are computed such that

∫

Γ

3uk,n+1
i − 4uk,ni + uk,n−1

i

2∆t
ξ +

∫

Γ

(
µkmχm + µkbχb + µkrχr

)
∇Γu

k,n+1
i ·∇Γξ +

∫

Γ

1

ε
χiu

k,n+1
i ξ = 0, ∀ξ ∈ H1(Γ).

The numerical solution of the adjoint problem is computed backward in time starting from the final time t = T .

By change of variable τ ≡ T − t ∈ (0, T ), we obtain
∂

∂τ
= − ∂

∂t
and the terminal condition becomes an initial

condition. A similar numerical scheme is used in the semi-discrete time approximation of the adjoint system. For
any n ∈ [1, N + 1] and given uk,m1 , uk,m2 , µkm, µkb and µkr , with m ∈ [1, N + 1], the semi-discrete adjoint problem
consists in finding vk,n−1

i with i ∈ {1, 2} such that

∫

Γ

3vk,n−1
i − 4vk,ni + vk,n+1

i

2∆t
ξ +

∫

Γ

(
µkmχm +µkbχb + µkrχr

)
∇Γv

k,n−1
i ·∇Γξ +

∫

Γ

1

ε
χiv

k,n−1
i ξ =

∑

ς=m,b

∑

j=1,2

ας,j

(∫ T

0

∫

Γς

uki −
∫ T

0

∫

Γς

Fς,jui,0

)
χςξ, ∀ξ ∈ H1(Γ).

Regarding the space discretization by finite elements, high order piecewise polynomial approximations using
Pκ(K), with κ > 1 and K ∈ Th, are used for both state and adjoint variables.

7



3 NUMERICAL APPROXIMATION

Algorithm 1 Strategy of the optimal control problem
0: Set k ← 0, err ← 2εJ
0: Let (u1,0, u2,0) be the known initial condition, and

(
µ0
m, µ

0
b , µ

0
r

)
be the initial guess

0: for n = 0, · · · , N ≡ T

∆t
do

0: Solve SP
(
u0,n+1

1 , u0,n+1
2

)
with u0,0

i = ui,0 (initialization)
0: end for
0: Evaluate J 0

0: while err > εJ do
0: λ← 6λ/5
0: for n = N + 1, · · · , 1 do
0: Solve AP

(
vk,n−1

1 , vk,n−1
2

)
using uk,N+1

1 and uk,N+1
2 for terminal conditions

0: end for
0: k ← k + 1
0: Compute GU

(
µkm, µ

k
b , µ

k
r

)

0: for n = 0, · · · , N do
0: Solve SP

(
uk,n+1

1 , uk,n+1
2

)
with uk,0i = ui,0

0: end for
0: Evaluate J

(
uki∈{1,2};µ

k
j∈{m,b,r}

)

0: while J k > J k−1 do
0: λ← 3λ/4
0: if λ < ελ then return "Algorithm stagnated"
0: end if
0: Re-compute GU

(
µkm, µ

k
b , µ

k
r

)

0: for n = 0, · · · , N do
0: Re-solve SP

(
uk,n+1

1 , uk,n+1
2

)
with uk,0i = ui,0

0: end for
0: Re-evaluate J

(
uki∈{1,2};µ

k
j∈{m,b,r}

)

0: end while

0: err ← |J
k − J k−1|
|J k−1|

0: end while=0

At the computational level, we have used a gradient-based optimization algorithm because some instability issues
are encountered when using an exact evaluation of the optimal controls (2.6a-2.6b-2.6c) at each optimization itera-
tion. That requires the evaluation of the gradient of the Lagrangian with respect to the control variables. Provided
with an initial guess for the controls µ0

m, µ0
b , and µ

0
r and a starting value for the descent length, the control variables

are updated along the gradient direction using an adapted step length λk as follows (3.1a-3.1b-3.1c).

GU
(
µkm, µ

k
b , µ

k
r

)
: For k > 0, given

(
uk−1
i , vk−1

i

)
with i ∈ {1, 2} and µk−1

j with j ∈ {m, b, r}, compute:

µkm = π[0,A]



µ

k−1
m − λk


δmµk−1

m + δ
(
µk−1
m − µk−1

b

)
−
∑

i=1,2

∫ T

0

∫

Γm

∇Γu
k−1
i ·∇Γv

k−1
i





 , (3.1a)

µkb = π[0,B]



µ

k−1
b − λk


δbµk−1

b + δ
(
µk−1
b − µk−1

m

)
−
∑

i=1,2

∫ T

0

∫

Γb

∇Γu
k−1
i ·∇Γv

k−1
i





 , (3.1b)

µkr = π[0,C]



µ

k−1
r − λk


δrµk−1

r −
∑

i=1,2

∫ T

0

∫

Γr

∇Γu
k−1
i ·∇Γv

k−1
i





 . (3.1c)

We proceed with an adaptation strategy for the step length λk to ensure the decrease of the cost functional.
Indeed, the step length is rejected and therefore decreased in the case where the cost functional does not decrease.
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4 NUMERICAL RESULTS

Control variables are updated only if the step length is accepted, while we exit the algorithm if λ drops below a
threshold value ελ. The gradient descent iterations are repeated until the relative change in the cost functional
becomes smaller than a given tolerance εJ . Hence, convergence is achieved at iteration k > 0 if

err ≡
∣∣J k − J k−1

∣∣
∣∣J k−1

∣∣ < εJ , with J k ≡ J
(
uki∈{1,2};µ

k
j∈{m,b,r}

)
.

The pseudo-code of the overall iterative scheme is detailed in Algorithm 1.
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Figure 3: Example 1: Study of the spatial convergence in the norms L2(Γ) (top), H1(Γ) (bottom left) and L∞(Γ)
(bottom right) for high order Lagrange polynomials Pκ and high order curved surface meshes. The logarithmic scale
is used.

4 Numerical results

The method has been implemented using Rheolef [Saramito, 2020], which represents a C++ library for scientific
computing with special emphasis on finite elements. The parallel computing relies on MPI5 and MUMPS which is
used for factorization and as direct solver on distributed-memory architectures. Rheolef relies also on the libraries
Boost6, Blas7, Scotch8, and UMFPACK9 for much of its functionalities. Numerical results are visualized graphically
using the open source application Paraview10 and Gnuplot11. The computations are performed on a workstation
with an Intel R© Core TM i7-4790 (3.6 GHz) processor.

5Message Passing Interface - http://www.mpich.org
6Boost libraries - http://www.boost.org
7Basic Linear Algebra Subprograms library - http://www.netlib.org/blas
8Scotch - http://www.labri.fr/perso/pelegrin/scotch
9Umfpack routines - http://www.cise.ufl.edu/research/sparse/umfpack/

10Paraview - http://www.paraview.org
11Gnuplot - http://www.gnuplot.info
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4.1 Example 1 4 NUMERICAL RESULTS

Figure 4: Example 2: Idealized and simplified geometry of yeast ER highlighting in red the mother, bud, bud neck
and photobleaching areas, respectively.

In the following, we provide a set of numerical examples to evaluate the performance of the presented numerical
method, with the ultimate goal of investigating numerically the barrier index theory.

4.1 Example 1

The purpose of this example is to validate the accuracy of the resolution of the direct problem, mainly the assembly of
surface operators for the numerical solutions of elliptic surface partial differential equations. We consider a test case
presented in [Deckelnick et al., 2010] and study numerically the convergence properties of the solution.The problem
consists in solving:

u−∆Γu = α
(
3x2y − y3

)
in Γ, with α = −13

8

√
35

π
.

The geometry is the unit sphere
{
x ∈ R3 : |x| = 1

}
and the exact solution is given by:

u(x) = α
|x|2

12 + |x|2
(
3x2y − y3

)
.

We study the spatial accuracy for high order finite element approximations by computing the error in the norms
L2(Γ), H1(Γ) and L∞(Γ) of the computed solution uh on successively refined meshes with respect to the reference
exact solution πhu, where πh is the Lagrange interpolation operator in the corresponding finite element space.

The decrease in errors with respect to mesh size and convergence rates are shown in Fig. 3. Results depict
the conformity between numerical and exact solutions for several polynomial finite element approximations. For

Figure 5: Example 2: Snapshots showing the computed fluorescence loss kinetics at optimal state for times t ∈
{10, 70, 170, 340} with a mesh h = 4× 10−3. Top: αm,2 = αb,2 = 2× 104, γm,2 = γb,2 = 0. Bottom: αm,2 = αb,2 = 0,
γm,2 = γb,2 = 108.
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Figure 6: Example 2: Numerical results of the optimal control with the desired states enforced over the entire time
period (Left: γm,2 = γb,2 = 0) and with the desired states at the final time T (Right: αm,2 = αb,2 = 0). Top: Loss
of fluorescence over time at certain iterations towards convergence. The arrows show the convergence towards the
optimal control solution for certain values of k between 0 and 3500. Center: Minimization of the functional cost.
Bottom: Convergence of key model parameters.

example, for the Lagrange polynomials P3, the experimental order of convergence is 4 in the norm L2(Γ), whereas it
is equal to 3 in the H1(Γ) norm. The results matches the theoretical error estimates ‖uh − πhu‖0,2,Γ < Chκ+1 and
‖uh − πhu‖1,2,Γ < Chκ, where C represents a constant, h = max

K∈Th

diameter(K) represents the mesh size, and κ is

the degree of the polynomial approximation with κ ∈ {1, 2, 3, 4}, see [Deckelnick et al., 2010].
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Figure 7: Example 2: Test cases, referred to as TC-1 and TC-2, with different photobleaching areas colored in red
(top left). Time evolution of the fluorescence decay (top right). Change in optimal parameters (bottom left) and
energy decay (bottom right).

4.2 Example 2: Optimal control simulations in simplified geometry

In this example, we proceed with a numerical validation of the proposed method in the case of simplified geometry
and data. We consider an idealized geometry encompassing the convex envelopes of the mother and bud domains,
and we generate successively refined semi-regular meshes. Photobleaching is only applied to the bud domain and
we consider the corresponding set of experimental measurements of fluorescence loss. The different subdomains are
described as regularized Heaviside functions (see for example [Laadhari, 2018b, Laadhari, 2017, Laadhari, 2018a]),
and are highlighted in Fig. 4. Thus, the direct problem consists in finding u2 satisfying (2.1b-2.1d), with αm,1 =
αb,1 = γm,1 = γb,1 = 0 in (2.3).

To test the robustness of the method for different choices of the energy parameters, we consider two different sets
of parameters so that we minimize the difference between the solution and the targets either over the whole time
interval or at the final instant, respectively. In the first experiment, we consider h = 0.043, ε = 10−10, P1 Lagrange
polynomials, αm,2 = αb,2 = 2 × 104, γm,2 = γb,2 = 0, δ = 1013, δm = δb = δr = 1, and µ0

m = µ0
b = µ0

r = 0.1. For
the optimal control with desired states at the final time, we choose h = 0.043, ε = 10−10, P1 Lagrange polynomials,
αm,2 = αb,2 = 0, γm,2 = γb,2 = 108, δ = 1012, δm = δb = δr = 1, and µ0

m = µ0
b = µ0

r = 0.05. We run the simulations
for t ∈ (0, T = 349) until the convergence of the optimal control algorithm is reached. The time evolution of
fluorescence loss kinetics is displayed in Fig. 6 (top) for several values of k, showing a slightly different kinetics as
the matching with the data is enforced in different ways. In Fig. 6 (top right), the iterative procedure converges and
allows estimating the optimal parameters so that the solution corresponds to the target kinetics at t = T . In Fig.
6 (center), we plot using a semi-logarithmic scale the decrease of the cost functional as a function of the number of
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Figure 8: Example 2: Modification of estimates of control variables and optimal control solution for different choices
of starting values for key parameters. Simulation parameters: αm,2 = αb,2 = 0, γm,2 = γb,2 = 108, δ = 1012,
δm = δb = δr = 1.

iterations for the two experiments, where Jδ represents the energy term weighted by δ in (2.3) (similarly for the other
energy terms). We observe a first phase characterized by a rapid decrease is followed by a plateau characterizing
convergence, where the optimal objective values are respectively 2.17× 109 and 8.83× 106. We can also verify that
the control parameters converge in Fig. 6 (bottom), showing a rapid increase from the starting values followed by a
plateau characterized by µm ≈ µb. The estimated optimal key parameters are µm = 0.232, µb = 0.229, µr = 0.124 in
the first test case, while µm = 0.195, µb = 0.195, µr = 0.078 in the second case. Using the optimal parameters found,
Fig. 5 provides snapshots of the numerical solution at the same times for the two aforementioned cases.

Sensitivity of the optimal control solution to the photobleaching area: We now study the sensitivity of
the optimal control solution to the change in the photobleaching area in the same compartment Γb. We consider
two test cases with different photobleaching areas as shown in Fig. 7. We consider a mesh size h = 0.043 and use
P1 Lagrange polynomials. The cost function parameters are set as follows: αm,2 = αb,2 = 0, γm,2 = γb,2 = 108,
δ = 1012, δm = δb = δr = 1. Fig. 7 (top left) shows similar kinetics of fluorescence decay at convergence. Energy is
minimized and convergence is achieved. The optimal model parameters are slightly different at convergence since the
photobleaching is applied to different areas in Γb. Nevertheless, we notice that we continue to have almost identical
values of µm and µb at the optimal state in each experiment, which remains significantly higher than the diffusion
parameter at the bud neck Γr, as will be subsequently discussed.

Sensitivity of the optimal control solution to the initial guesses: We now investigate the sensitivity of the
optimal control solution to the choice of starting values of the key parameters µm, µb and µr. We run the simulations
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Figure 9: Example 2: Change in the estimates of control variables and cost functional for high order finite elements.
Parameters: αm,2 = αb,2 = 0, γm,2 = γb,2 = 108, δ = 1012, δm = δb = δr = 1 and µ0

m = µ0
b = µ0

r = 0.05.

for h = 0.043 using P1 Lagrange polynomials. The cost functional parameters are set as follows: αm,2 = αb,2 = 0,
γm,2 = γb,2 = 108, delta = 1012, δm = δb = δr = 1 so that more emphasis is placed on the solution matching targets at
instant t = T . For different choices of the starting values, Fig. 8 plots the changes in µm, µb, the objective functional
J and the loss of fluorescence in Γm and Γb, showing that the optimal control solution is relatively insensitive to
changes in the initial guesses. As expected, choosing a relatively far initialization of the model parameters results in
slower convergence to the desired state. Indeed, convergence is reached after 250 iterations for µ0

m = µ0
b = µ0

r = 0.05,
whereas it is reached after 1500 iterations for µ0

m = µ0
b = µ0

r = 1.

Convergence study for high order piecewise finite element approximations: In this test case, we study
the sensitivity of the optimal parameters to the choice of the finite element approximation. We run the simulations
searching for solutions in spaces generated by Lagrange polynomials of higher order Pκ, κ > 1. We study the estimated
optimal solutions with respect to the total number of degrees of freedom, referred to as Dof, for a fixed number of
mesh elements.

Pκ Dof µ?m µ?b µ?r J ?

P1 2407 0.195178 0.194918 0.0784062 8.83096E+6
P2 9622 0.201067 0.200895 0.0977545 4.98737E+6
P3 21647 0.202328 0.202163 0.102388 3.89932E+6
P4 38492 0.203342 0.203204 0.101571 2.89142E+6
P5 60127 0.204080 0.203959 0.103173 2.23366E+6
Reference values 0.206645 0.206725 0.102447 1.51009E+6

Table 1: Example 2: Convergence history for high order finite element approximations using Pκ with κ > 1.
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We consider the following parameters: αm,2 = αb,2 = 0, γm,2 = γb,2 = 108, δ = 1012 and δm = δb = δr = 1.
The time step size is chosen small enough not to influence substantially the overall accuracy. The time horizon is
(0, T = 349). The evolution of the model parameters and the evolution of the energy cost with respect to the number
of iterations are provided in Fig. 9, showing an overall convergence for higher degrees. Table 1 reports the optimal
quantities calculated at convergence, i.e. when k → ∞, for higher polynomial degrees as well as the corresponding
reference values, obtained by numerical continuation.

Spatial convergence study: Hereafter, we carry out a quantitative convergence study with respect to the reference
solution qt,ref obtained by fitting the available measurement data. Let NTS design the number of time steps in each
numerical simulation. We introduce the relative error corresponding to the temporal evolution of the quantity qt and
its rate of convergence as follows:

‖eh‖Γb,2 =

(
NTS∑

t=1

|qt,ref − qt,h|2
)1/2

, with qt =

∫

Γb

u2(t,x) dx and ROC =
log10 (‖eh‖Γb,2)

log10 (h)
.

The parameter h represents an average mesh size within a given mesh refinement level, while qt,h is an approximation
of qt using Th. For different values of NTS, we appropriately consider the standard linear interpolation applied to
the solution qt. The results in Table 2 show that the aforementioned quantity converges with a more than linear
order of convergence in the l2-norm.

h Dof µ?m(k →∞) µ?b(k →∞) µ?r(k →∞) ROC

0.094 1450 0.17493 0.17427 0.07649 2.77
0.060 2634 0.18637 0.18594 0.06838 2.33
0.043 4810 0.19538 0.19512 0.07592 2.08
0.038 7262 0.19930 0.19912 0.07714 1.85
0.029 12556 0.20756 0.20755 0.08490 1.65
0.019 26692 0.21499 0.21509 0.09372 1.53
0.014 28348 0.21669 0.21682 0.09342 1.53
0.009 102084 0.22317 0.22343 0.10016 1.37
0.007 150522 0.22501 0.22531 0.10168 1.31
0.004 368908 0.22799 0.22836 0.10386 1.19
Reference values 0.2305 0.2309 0.1084 –

Table 2: Example 3: Convergence history of same outputs with respect to spatial resolution. Simulation parameters:
P1 Lagrange polynomials, αm,2 = αb,2 = 0, γm,2 = γb,2 = 108, δ = 1012, δm = δb = δr = 1, and µ0

m = µ0
b = µ0

r = 0.05.

Computational cost: To study the computational features of the proposed optimal control strategy for different
choices of energy parameters, we run two different simulations with the same spatial resolution h = 0.014 using the
P1 Lagrange polynomials. We choose the parameters ας,2 = 2× 104, γς,2 = 0, δ = 1013, δm = δb = δr = 1 in the first
simulation, while we set ας,2 = 0, γς,2 = 108, δ = 1012, δm = δb = δr = 1, with ς ∈ {m, b}, in the second simulation.
Parallel calculations are performed until convergence on a workstation using 4 cores. The computational cost is 749.4
s in the first case, while it is 636.2 s in the second case, which shows that the prescription of the matching at the final
instant presents lower but not significant computational savings compared to the case where matching is imposed in
the entire time interval. However, it should be noted that the two choices of energy parameter lead to qualitatively
similar results in terms of fluorescence kinetics and ratios between the optimal parameters at convergence, as show
above in Fig. 6. Therefore, the choice ας,i = 0 will be preferred in the sequel.
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Figure 10: Example 3: Flipping in mother compartment. Snapshots showing fluorescence kinetics loss in numerical
simulations with optimal model’s parameters at times t ∈ {5, 15, 20, 50, 80, 110, 250, 355}.

4.3 Example 3: Diffusion barrier in yeast endoplasmic reticulum

Hereinafter, we focus exclusively on the numerical investigation of the empirical conclusions of compartmentalization
by diffusion barrier, where the optimization is performed over the time interval of each FLIP experiment. We
run numerical simulations using the data-driven model to investigate key model parameters in different cellular
compartments, paying particular attention to the change in the cost functional. However, the effect of compartment
size ratio on the kinetics of fluorescence will be subsequently explored in Example 4.4.

In this regard, we consider the setting and measurements of the aforementioned series of FLIP experiments de-
scribed in subsection 2.1, where photobleaching is applied either at the mother or bud compartments. A unstructured
realistic ER mesh of nearly regular triangular elements is considered. The initial guess of the key parameters to be
estimated iteratively is µ0

m = µ0
b = µ0

r = 0.43, while we choose ε = 10−10 and δm = δb = δr = 1.
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Figure 11: Example 3: (Left) Convergence of the objective functional with respect to the iterations count k. (Right)
Change in the step length with respect to the iteration count. The logarithmic scale is used on the y axis. Parameters:
δ = 106, ας,j = 106 and γς,j = 0 for ς ∈ {m, b} and j ∈ {1, 2}, and δm = δb = δr = 1.
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Figure 12: Example 3: Flipping in bud compartment. Snapshots showing fluorescence kinetics loss in numerical
simulations with optimal model’s parameters at times t ∈ {5, 15, 20, 50, 80, 110, 250, 355}.

The optimal control algorithm provided satisfactory results illustrating the convergence of the iterative procedure.
Moreover, we follow the decay of the objective functional J k with respect to the number of descent gradient iterations
in Fig. 11 (left). The graph shows a rapid decrease in cost in an initial phase, followed by a horizontal plateau reached
when the minimum is reached; That corresponds to the optimal objective functional obtained with the estimated
optimal parameters.

The evolution of the adapted step length λk with respect to the number of iterations is reported in Fig. 11 (right).
It shows in a first phase several fluctuations due to the adaptation of the step length to ensure the decrease of the
cost functional, featuring here a rapid decrease. The variations of J are small thereafter, leading to lower and lower
values of λk until it becomes lower than the tolerance threshold ελ when convergence is reached.

The change of model parameters with respect to the number of iterations is provided in Fig. 13. At convergence,
the estimated model parameters are µ?m = 0.661853, µ?b = 0.661895 and µ?r = 0.0312565. The direct problem is then
solved for both FLIP experiments using the estimated optimal parameters. We evaluate the normalized intensity
values throughout the time periods in both bleached and unbleached cell compartments. Fig. 14 shows the target

µr

µb

µm

µ⋆
r

µ⋆
m ≈ µ⋆

b

Iteration k

Model’s parameters

5× 1032.5 × 1030

0.8

0.6

0.4

0.2

0

Figure 13: Example 3: Change in the estimates of control variables versus the iteration count k. Scaling coefficients:
δ = 106, ας,j = 106 and γς,j = 0 for ς ∈ {m, b} and j ∈ {1, 2}, and δm = δb = δr = 1.
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Figure 14: Example 4: Time evolution of the kinetics of fluorescence, obtained with the estimated optimal parameters,
compared to the experimental data. (Left) Photobleaching applied to mother cortex. (Right) Photobleaching applied
to the bud. Error bars indicate the standard deviation SD after averaging 20 different data measurements. Mean ±
SD.

experimental data of the fluorescence signal at specific measurement times, along with its maximum and minimum
values. It depicts a good agreement between the numerical results and the experimental measurements. In figures 10
and 12, we visualize the fluorescence intensity field for eight consecutive snapshots at the optimal state after applying
a photobleaching to Γm and Γb, respectively. In both cases, the effect of the diffusion barrier at the bud neck region
can be seen.

Remark that the estimated optimal control parameters satisfy µ?m/µ
?
b ≈ 1.0 and µ?m/µ

?
r ≈ 21.2. That is, the

numerical results pinpoint that the diffusion of the reporter protein is similarly fast in the mother and in the bud
compartments. However, it is 21 times slower in the barrier zone at the level of the bud neck. This is in agreement with
the conclusions of many biologists that a physical diffusion barrier exists between the main compartments, whereas
the protein Sec61-GF moves at similar speeds in the mother and bud compartments, see e.g. [Luedeke et al., 2005].
Consequently, the restricted diffusion in the bud neck region helps to slow the loss of fluorescence in the unbleached
compartment in each FLIP experiments. From a biological point of view, the bud neck area features a specific
morphology and contributes primarily, and among other things, to the retention of damage and aging factors between
the mother and daughter cell, as mentioned above. Although our numerical study is in quantitative agreement with
the diffusion barrier theory, we are still far from a high-fidelity mathematical description characterizing the intrinsic
processes underlying such barriers.
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Figure 15: Example 4: Bar chart representing the T1/2 of the unbleached compartment over the T1/2 of the bleached
compartment in the experimented in comparison to the simulated data. Mean ± SD.
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Figure 16: Example 4: (Left) ER mesh featuring a size of the bud nearly identical to the size of the mother cell.
(Right) Segmented realistic realistic geometry of the yeast ER.

4.4 Example 4: Barrier index and dependence on compartment size ratio

Last but not least, we explore the effect of the compartment size on the kinetics of fluorescence. An index of great
importance to biologists is the Barrier Index, referred to as BI. We first define T1/2 as the time corresponding to
a concentration equal to 50% of the initial concentration before photobleaching in a given compartment, as shown
graphically in Fig 14. The BI represents the ratio of the times required to lose 50% of the fluorescence signal in the
unbleached compartment compared to the bleached compartment.

An agreement in the calculation of the barrier index between the photobleached and unbleached compartments
between the numerical and experimental results is obtained. Remark that the BI reaches much higher values (18.22±
1.90 experimentally and 18.572 numerically) when photobleaching is applied to the bud than when it is applied to
the mother (7.76±2.27 experimentally and 6.907 numerically), see Fig 15. The biologists rationalized that this might
simply be due to the fact that the ER volume in the bud is smaller than that in the mother cell, leading to a much
more rapid depletion of the smaller compartment upon FLIP.

In order to test whether this explanation indeed explains the yeast observations, the dependence between the
compartment size ratio and the barrier index is studied numerically. We calculate how the observed BI would change
when the relative volume of mother and bud is allowed to vary. Using the segmented ER geometry, we generate
different meshes without changing the ER organization in the mother cortex but where the bud is increasingly bigger,
until reaching almost the size of the mother compartment, see Fig 16. The surface meshes are subsequently remeshed
in order to optimize the quality of the mesh for carrying out finite element calculations.

We consider the optimal parameters µ?m, µ?b and µ?r found previously. Parallel FLIP experiments were then
simulated in each of these meshes, FLIPing either the mother or the bud compartment. In each geometry, the values
of the BI obtained by photobleaching in the mother and in the bud are then compared. Whereas the ratio between
the BI in the bud divided by the BI in the mother is high as long as the bud domain is significantly smaller than
the mother cell, this ratio becomes close to 1 as the size of the bud approaches the size of the mother, see Fig.
17. A noticeable consequence is that, at least in budding yeast cell, the difference in BI depending on the place of
photobleaching reflects the fact that (i) the ER membrane is compartmentalized and (ii) one compartment is smaller
than the other.

5 Conclusions

This contribution presents a numerical framework for the modeling of the kinetics of fluorescently tagged molecules
on the endoplasmic reticulum in asymmetrically dividing yeast cell. Using the Fluorescence Loss In Photobleaching
technique, experiments are carried out in laboratory and provide measurement data on the decrease in the level of
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Figure 17: Example 4: Change in the ratio BIbud/BImother when the size of the bud increases relative to the size
of the mother. It tends to 1 for similar sizes of ER compartments.

fluorescence in the different cellular compartments. To study the anisotropic molecular diffusion, we present a data-
driven mathematical model based on the use of partial differential equations constrained optimization. Optimality
conditions are derived and a gradient descent algorithm is used to estimate the diffusion parameters in the different
cellular compartments. We address the main features of the method and we provide simulations with the aim of
providing numerical evidence of compartmentalization in the ER membrane. Our computational model supports some
biological conclusions indicating that the exchange of membrane proteins between mother and bud compartments is
very slow, almost 20 times slower, compared to the diffusion of proteins into each compartment due to some surface
diffusion limitations at the bud-neck zone.

This compartmentalization is also conserved in a broad range of cellular contexts, such as mouse neural stem cells
and the early C. Elegans embryo, and contributes to processes as diverse as the confinement of protein aggregates
during aging and the patterning of developing embryos. Further improvements are needed to better explore the
compartmentalization in budding cells, while accounting for high fidelity mathematical descriptions. This is part of
an ongoing work to explore concordant hypotheses for anisotropic exchange of ER proteins in yeast and and other
cells [Laadhari et al., 2013, Laadhari, 2011], with more accurate mathematical formalism accounting for uncertainty
quantification in the solution and the sensitivity of data noise on model parameters.
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