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Introduction

Root-finding problems constitute a fundamental aspect of numerical analysis and computational mathematics, serving
as essential tools for solving equations of the form f(x) = 0. These problems arise in various fields, including engineer-
ing, physics, and economics, where determining the values that satisfy linear and nonlinear equations is critical for
modeling and analysis. Effective techniques for finding roots are necessary for solving both theoretical and practical
problems, as many scientific computations rely on the accurate determination of these values.

Among the various methods developed for root-finding, the fixed-point method is one of the simplest and most intuitive
approaches. This technique involves rearranging the equation f(x) = 0 into the form g(x) = x, where g(x) is a function
that ideally converges to the root of the original equation. By iteratively substituting estimates into the function g(x),
the method generates a sequence of approximations that converge to the root, provided certain conditions are met.
While the fixed-point method is conceptually straightforward and easy to implement, it has several limitations that
can hinder its effectiveness. One significant drawback is its dependence on the choice of the function g(x) and the
initial guess, if these are not chosen wisely, the method can fail to converge or may converge very slowly. Additionally,
the fixed-point method may struggle with functions that exhibit discontinuities or have roots that are not well-defined
within the iteration process, limiting its applicability in more complex scenarios.

An alternative to the fixed-point method, and one of the most powerful techniques for root-finding, is Newton’s method,
also known as the Newton-Raphson method [1]. This iterative algorithm is renowned for its rapid convergence and
efficiency, often yielding better accuracy than the fixed-point method, particularly when the initial guess is close to the
actual root. Named after Sir Isaac Newton and Joseph Raphson, who contributed to its formulation in the 17th century,
Newton’s method remains a cornerstone of numerical analysis due to its effectiveness in solving root-finding problems
across a wide range of applications. However, it is essential to consider its limitations, such as reliance on the func-
tion’s derivative and sensitivity to the choice of the initial guess, which can impact its performance in certain scenarios.

In numerical analysis, Newton’s method extends beyond basic root-finding problems and finds applications in various
fields, including optimization, differential equations, and scientific computing. Its rapid convergence, combined with
its ability to handle non-linear systems, makes it an indispensable tool across diverse applications. For example, its ap-
plication to a specific biomedical problem shown in [2]. High-order Newton methods have been developed and applied
to solve nonlinear partial differential equations in different contexts, although their use has mainly focused on systems
of ordinary differential equations. In particular, the high-order methods developed in [3, 4, 5]. Some examples include
1D reaction-diffusion models [6, 7, 8], population dynamics via the Fisher equation [9], and nonlinear heat conduction
[10]. Some of the high-order methods were also applied to solve fluid and multiphase flow problems [11, 12, 13, 14], as
well as fluid-membrane interactions [15].

This project explores specific Newton variants for solving root-finding problems and nonlinear ordinary differentials
equations used in some specific biomedical applications. This report is structured as follows, Chapter 1 lays the
groundwork by introducing the general setting of root-finding problems, and the theoretical framework of the Newton’s
method and a couple of its modifications. Chapter 2 then presents a comparative numerical study of these schemes.
Chapter 3 generalizes the methods to systems of nonlinear equations and formulates the generalized framework. Lastly,
Chapter 4 applies the framework to initial-value problems in differential equations.
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Chapter 1

Root-finding Problems: Setting and
Methods

In this chapter, the general framework and setting of 1-dimensional root-finding problems are established, alongside
an in-depth exploration of the Newton’s method and three of its modifications, examining how they are derived
thoroughly, as well as their theoretical convergence rates.

1.1 Generalities

In many cases, a function may have a root of order m, where the root of order m is defined as a point x∗ such that

f(x∗) = 0

f ′(x∗) = 0

...

f (m−1)(x∗) = 0

f (m)(x∗) ̸= 0

In this report, the focus will be on simple roots, which corresponds to the case when m = 1. To maintain consistency,
the notation x∗ will be used throughout to denote the simple root of a function f(x).

Having established the concept of simple roots, some general conditions need to be established under which the New-
ton’s method and its modifications effectively converge to such roots. First, the function f(x) must belong to the class
Ck, meaning it must be continuously differentiable up to some order k. This ensures the existence and continuity of
the function and its derivatives, which are critical for Newton’s iterative scheme. Additionally, convergence depends
on the proximity of the initial guess x0 to the actual root x∗. Specifically, there must exist some constant δ > 0 such
that x0 ∈ (x∗ − δ, x∗ + δ) ensuring that the method converges for sufficiently close initial guesses.

Furthermore, having established the conditions under which the Newton’s method converges, it is crucial to define the
rate of convergence of an iterative scheme. Newton’s method is said to converge to the root x∗ with order α if there
exist positive constants α and λ such that

lim
n→∞

|en+1|
|en|α

= λ,

where en denotes the error at the nth iteration, defined as

en = xn − x∗.

Consequently, the error at the (n+ 1)th iteration can be expressed as

en+1 = xn+1 − x∗

= F (xn)− x∗

= E(xn),
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where F (xn) represents the iterative scheme and E(xn) is introduced as a convenient notation.

In the analysis of the order of convergence of an iterative scheme, the Taylor expansion is a critical tool. The nth

order Taylor expansion of a function f(x) around a point x0 can be expressed as

f(x) =

n∑
i=0

f (i)(x0)

i!
(x− x0)

i +O((x− x0)
n+1),

where f (i)(x0) denotes the i
th derivative of the function evaluated at the point x0, and the big O term O((x−x0)

n+1)
accounts for the higher-order remainder, capturing the behavior of the function as x approaches x0.
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1.2 Newton’s Method

The scheme is derived by performing a 1st order Taylor expansion of f(xn+1) around the point xn, which results in
the following

f(xn+1) = f(xn) + f ′(xn)(xn+1 − xn) +O((xn+1 − xn)
2).

Assuming that xn+1 → x∗ as n → ∞, taking the limit as n → ∞ results in the following

f(xn+1) = f(xn) + f ′(xn)(xn+1 − xn) = 0.

Performing some algebraic operations to isolate xn+1 results in the following

xn+1 = xn − f(xn)

f ′(xn)
, (1.1)

which is the Newton’s method scheme [1].

Theorem:
Let f ∈ C2[a, b], then the Newton’s method scheme (1.1) converges quadratically.

Proof:
Consider a 2nd order Taylor expansion of en+1 around the point x∗

en+1 = E(x∗) + E′(x∗)en +
E′′(x∗)

2
e2n +O(e3n).

Given that

E(xn) = xn − f(xn)

f ′(xn)
− x∗,

this implies that

E(x∗) = 0.

Consequently,

E′(xn) =
f(xn)f

′′(xn)

f ′(xn)2
,

which implies that

E′(x∗) = 0.

Therefore,

en+1 =
E′′(x∗)

2
e2n +O(e3n).

Dividing both sides by e2n results in the following

en+1

e2n
=

E′′(x∗)

2
+O(e3n).

Lastly, as n → ∞, the following is obtained

lim
n→∞

en+1

e2n
=

E′′(x∗)

2
+ lim

n→∞
O(e3n)

=
E′′(x∗)

2
.

Therefore, the Newton’s method scheme (1.1) converges quadratically.
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1.3 Newton’s Method: Kou Modification

A modification to the classical Newton’s method scheme (1.1) has been proposed by J. Kou in [3], which supposedly
convergences cubically. The modified scheme is derived by a different approach, which is the computation of the
definite integral

f(xn+1) = f(yn) +

∫ xn+1

yn

f ′(t) dt, (1.2)

where

yn = xn +
f(xn)

f ′(xn)
. (1.3)

Using the midpoint formula to evaluate the integral in (1.2) results in the following

f(xn+1) = f(yn) + (xn+1 − yn)f
′
(
xn+1 + yn

2

)
= f(yn) + xn+1f

′
(
xn+1 + yn

2

)
− ynf

′
(
xn+1 + yn

2

)
.

Assuming that xn+1 → x∗ as n → ∞, taking the limit as n → ∞ results in the following

f(xn+1) = f(yn) + xn+1f
′
(
xn+1 + yn

2

)
− ynf

′
(
xn+1 + yn

2

)
= 0.

Performing some algebraic operations to isolate xn+1 results in the following

xn+1 = yn − f(yn)

f ′
(
xn+1 + yn

2

) . (1.4)

Lastly, substituting (1.1) into (1.4) results in the following

xn+1 = yn − f(yn)

f ′(xn)
, (1.5)

which is the modified Newton’s method scheme proposed by J. Kou.
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Theorem:
Let f ∈ C3[a, b], then the modified Newton’s method scheme (1.5) converges cubically.

Proof:
Consider a 3rd order Taylor expansion of f(x) around the point xn evaluated at the point x∗

f(x∗) = f(xn)− f ′(xn)en +
f ′′(xn)e

2
n

2
− f (3)(xn)e

3
n

3!
+O(e4n)

= 0.

This implies that

f(xn) = f ′(xn)en − f ′′(xn)e
2
n

2
+

f (3)(xn)e
3
n

3!
+O(e4n). (1.6)

Let

dn = yn − xn

=
f(xn)

f ′(xn)
, (1.7)

substituting (1.6) into (1.7) results in the following

dn = en − f ′′(xn)

2f ′(xn)
e2n +

f (3)(xn)

3!f ′(xn)
e3n +O(e4n). (1.8)

Consequently,

d2n = e2n − f ′′(xn)

f ′(xn)
e3n +O(e4n)

d3n = e3n +O(e4n).

Now consider a 3rd order Taylor expansion around the same point xn but of f(yn) instead

f(yn) = f(xn) + f ′(xn)dn +
f ′′(xn)

2
d2n +

f (3)(xn)

3!
d3n +O(d4n),

this implies that

f(yn)− f(xn) = f ′(xn)dn +
f ′′(xn)

2
d2n +

f (3)(xn)

3!
d3n +O(d4n). (1.9)

Substituting (1.8) into (1.9) results in the following

f(yn)− f(xn) = f ′(xn)en − f ′′(xn)
2

2f ′(xn)
e3n +

f (3)(xn)

3
e3n +O(e4n). (1.10)

Substituting (1.3) into (1.5) results in the following

xn+1 = xn − f(yn)− f(xn)

f ′(xn)
.

Therefore, the error at the (n+ 1)th iteration can be expressed as

en+1 = en − f(yn)− f(xn)

f ′(xn)
.

=
f ′(xn)en − (f(yn)− f(xn))

f ′(xn)
. (1.11)

Substituting (1.10) into (1.11) results in the following

en+1 = e3n

(
f ′′(xn)

2

2f ′(xn)2
+

f (3)(xn)

3f ′(xn)

)
+O(e4n).
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Dividing both sides by e3n results in the following

en+1

e3n
=

f ′′(xn)
2

2f ′(xn)2
+

f (3)(xn)

3f ′(xn)
+O(e4n).

Lastly, as n → ∞, the following is obtained

lim
n→∞

en+1

e3n
= lim

n→∞

(
f ′′(xn)

2

2f ′(xn)2
+

f (3)(xn)

3f ′(xn)
+O(e4n)

)
=

f ′′(x∗)2

2f ′(x∗)2
+

f (3)(x∗)

3f ′(x∗)
.

Therefore, the modified Newton’s method scheme (1.5) converges cubically.
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1.4 Newton’s Method: Homeier Modification

Another modification to the Newton’s method scheme was proposed by H. Homeier in [4], which supposedly converges
cubically as well. The iterative function is of the type

F (x) = x− f(x)

f ′(x+ a(x)f(x))
,

for some sufficiently smooth arbitrary function a(x). Many choices of a(x) could ensure cubic convergence, however,
the choice of interest is

a(x) = − 1

2f ′(x)
.

Therefore, the modified Newton’s scheme proposed by H. Homeier is given by

xn+1 = xn − f(xn)

f ′(yn)
, (1.12)

where

yn = xn − f(xn)

2f ′(xn)
.
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Theorem:
Let f ∈ C3[a, b], if there exists some constant M such that |F (3)(x)| ≤ M , then the modified Newton’s method scheme
(1.12) converges cubically.

Proof:
Consider a 3rd order Taylor expansion of en+1 around the point x∗

en+1 = E(x∗) + E′(x∗)en +
E′′(x∗)

2
e2n +

E(3)(x∗)

3!
e3n +O(e4n).

Given that

E(xn) = xn − f(xn)

f ′(yn)
− x∗,

this implies that

E(x∗) = 0.

Consequently,

E′(xn) = 1− f ′(xn)

f ′(yn)
+

f(xn)f
′′(yn)

(
1 +

f(xn)f
′′(xn)

f ′(xn)
2

)
2f ′(yn)2

,

which implies that

E′(x∗) = 0,

and

E′′(xn) =− f ′′(xn)

f ′(yn)

+

f ′(xn)f
′′(yn)

(
1 +

f(xn)f
′′(xn)

f ′(xn)
2

)
f ′(yn)2

−
f(xn)f

′′(yn)
2

(
1 +

f(xn)f
′′(xn)

f ′(xn)
2

)2

f ′(yn)3

+

f(xn)f
(3)(yn)

(
1 +

f(xn)f
′′(xn)

f ′(xn)
2

)2

4f ′(yn)2

+

f(xn)
2f ′′(yn)

(
f (3)(xn)f

′(xn)
2 − 2f ′(xn)f

′′(xn)
2

2f ′(xn)
4

)
f ′(yn)2

+

f(xn)f
′′(yn)

(
2f(xn)f

′′(xn)
f ′(xn)

2 − f ′′(xn)
f ′(xn)

)
2f ′(yn)2

,

which implies that

E′′(x∗) = 0.

Therefore,

en+1 =
E(3)(x∗)

3!
e3n +O(e4n).

Dividing both sides by e3n results in the following

en+1

e3n
=

E(3)(x∗)

3!
+O(e4n).
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Lastly, as n → ∞, the following is obtained

lim
n→∞

en+1

e3n
= lim

n→∞

(
E(3)(x∗)

3!
+O(e4n)

)
=

E(3)(x∗)

3!
.

The M condition ensures that the asymptotic error λ converges to some value rather than it diverging. Therefore, the
modified Newton’s method scheme (1.12) converges cubically.
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1.5 Newton’s Method: Weerakoon Modification

Another modification to the Newton’s method scheme was proposed by S. Weerakoon in [5], which supposedly converges
cubically as well. Similar to Kou’s modification, the scheme is derived by the computation of the definite integral

f(xn+1) = f(xn) +

∫ xn+1

xn

f ′(t) dt. (1.13)

However, the trapezoidal rule is used to evaluate the integral in (1.13) instead of the midpoint formula, which results
in the following

f(xn+1) = f(xn) +
xn+1 − xn

2
(f ′(xn) + f ′(xn+1)).

Assuming that xn+1 → x∗ as n → ∞, taking the limit as n → ∞ results in the following

f(xn+1) = f(xn) +
xn+1 − xn

2
(f ′(xn) + f ′(xn+1)) = 0.

Performing some algebraic operations to isolate xn+1 results in the following

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(xn+1)
, (1.14)

which is an implicit scheme as it requires f ′(xn+1) to compute xn+1. Let

yn = xn − f(xn)

f ′(xn)
, (1.15)

which is defined as xn+1 in the classical Newton’s scheme (1.1). Lastly, substituting (1.15) into (1.14) results in the
following

xn+1 = xn − 2f(xn)

f ′(xn) + f ′(yn)
, (1.16)

which is the modified Newton’s method scheme proposed by S. Weerakoon.
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Theorem:
Let f ∈ C3[a, b], then the modified Newton’s method scheme (1.16) converges cubically.

Proof:

Let Cj =
f (j)(x∗)
j!f ′(x∗)

. Consider a 3rd order Taylor expansion of f(xn) around the point x∗

f(xn) = f(x∗) + f ′(x∗)en +
f ′′(x∗)

2
e2n +

f (3)(x∗)

3!
e3n +O(e4n)

= f ′(x∗)(en + C2e
2
n + C3e

3
n +O(e4n)). (1.17)

Consider a 2nd order Taylor expansion of f ′(xn) around the point x∗

f ′(xn) = f ′(x∗) + f ′′(x∗)en +
f (3)(x∗)

2
e2n +O(e3n)

= f ′(x∗)(1 + 2C2en + 3C3e
2
n +O(e3n)). (1.18)

Using (1.17) and (1.18),

f(xn)

f ′(xn)
=

en + C2e
2
n + C3e

3
n +O(e4n)

1 + 2C2en + 3C3e2n +O(e3n)
.

It is clear that 1
f ′(xn)

is of the form 1
1 + x with x = 2C2en + 3C3e

2
n + O(e3n). Therefore, a 2nd order Maclaurin

expansion results in the following

f(xn)

f ′(xn)
= (en + C2e

2
n + C3e

3
n +O(e4n))(1− (2C2en + 3C3e

2
n +O(e3n)) + (2C2en + 3C3e

2
n +O(e3n))

2 +O(e3n))

= en − C2e
2
n + (2C2

2 − 2C3)e
3
n +O(e4n). (1.19)

Substituting (1.19) into (1.15) results in the following

yn = x∗ + C2e
2
n + (2C3 − 2C2

2 )e
3
n +O(e4n). (1.20)

Using (1.20), consider a 1st order Taylor expansion of f ′(yn) around the point x∗

f ′(yn) = f ′(x∗) + f ′′(x∗)(C2e
2
n + (2C3 − 2C2

2 )e
3
n +O(e4n)) +O(e4n)

= f ′(x∗)(1 + 2C2
2e

2
n + 4C2(C3 − C2

2 )e
3
n +O(e4n)). (1.21)

Consequently, (1.18) and (1.21) result in the following

f ′(xn) + f ′(yn) = 2f ′(x∗)(1 + C2en + (C2
2 +

3

2
C3)e

2
n +O(e3n)). (1.22)

Substituting (1.22) into (1.16) results in the following

xn+1 = xn − en + C2e
2
n + C3e

3
n +O(e4n)

1 + C2en + (C2
2 + 3

2C3)e2n +O(e3n)
. (1.23)

Similarly, a 2nd order Maclaurin expansion of the denominator in (1.23) results in the following

xn+1 = xn − (en + C2e
2
n + C3e

3
n +O(e4n))(1− (C2en + (C2

2 +
3

2
C3)e

2
n +O(e3n)) + (C2en + (C2

2 +
3

2
C3)e

2
n +O(e3n))

2 +O(e3n))

= xn − en + (C2
2 +

1

2
C3)e

3
n +O(e4n).

Therefore,

en+1 = (C2
2 +

1

2
C3)e

3
n +O(e4n).

Dividing both sides by e3n results in the following

en+1

e3n
= C2

2 +
1

2
C3 +O(e4n).
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Lastly, as n → ∞, the following is obtained

lim
n→∞

en+1

e3n
= lim

n→∞

(
C2

2 +
1

2
C3 +O(e4n)

)
= C2

2 +
1

2
C3.

Therefore, the modified Newton’s method scheme (1.16) converges cubically.
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Chapter 2

Numerical Testing and Convergence

In this chapter, the various schemes introduced are tested on a set of nonlinear functions in order to evaluate their
convergence rates and computational efficiency. Table 2.1 presents the results, where N2 denote the classical quadratic
Newton’s scheme, and K3, H3, and W3 denote the cubic modifications proposed by Kou, Homeier, and Weerakoon,
respectively. In the table, n represents the number of iterations required to converge within a tolerance of ϵ = 1×10−12,
NFE represent the number of fucntion evaluations, xn is the computed root, and |f(xn)| represents the residual error
at the root.

Table 2.1: Performance comparison of the Newton’s method and its modifications across various test functions.

n NFE xn |f(xn)|

f1(x) = x3 + 4x2 − 15, x0 = −0.9
N2 25 50 1.63198080556606672786 0.00000000000006750156
K3 4 12 1.63198080556606339719 0.00000000000000355271
H3 9 27 1.63198080556606339719 0.00000000000000355271
W3 6 18 1.63198080556606339719 0.00000000000000355271

f2(x) = x2 sin(x)− cos(x), x0 = 6
N2 4 8 6.30830895523815726733 0.00000000000023636648
K3 3 9 6.30830895523815105008 0.00000000000001321165
H3 3 9 6.30830895523815105008 0.00000000000001321165
W3 3 9 6.30830895523815105008 0.00000000000001321165

f3(x) = e−x sin(x) + ln(x2 + 1), x0 = 3
N2 6 12 0.00000000000000005763 0.00000000000000005763
K3 4 12 0.00000000000000000001 0.00000000000000000001
H3 4 12 0.00000000000000001429 0.00000000000000001429
W3 5 15 -0.00000000000000006587 0.00000000000000006587
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To complement the tabular comparison, the convergence behavior of the iterative schemes is illustrated for each of the
three test functions. Figures 2.1–2.3 display a plot of log |fi(xn)| against the iteration index n for each all i.

Figure 2.1: Error curves for the Newton’s method and its modifications when applied to f1(x).

Figure 2.2: Error curves for the Newton’s method and its modifications when applied to f2(x).
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Figure 2.3: Error curves for the Newton’s method and its modifications when applied to f3(x).

As observed in Table 2.1 and Figures 2.1–2.3, the Newton’s method modifications converge more rapidly than the
standard Newton method. The error curves for the modified schemes demonstrate a steeper decline, indicating that
the desired tolerance is achieved in fewer iterations. Additionally, the residual errors remain consistently lower across
most iterations, reflecting both faster convergence and improved accuracy.

As mentioned earlier, a numerical scheme is said to have a rate of convergence of order α if there exist positive
constants α and λ such that

lim
n→∞

|en+1|
|en|α

= λ,

this definition can be equivalently expressed in terms of the previous error term as

lim
n→∞

|en|
|en−1|α

= λ.

To determine the rate of convergence , the equations are manipulated as follows. Firstly, taking the limit of the ratio
of these expressions for consecutive terms results in the following

lim
n→∞

∣∣∣∣en+1e
α
n−1

eα+1
n

∣∣∣∣ = λ

λ
= 1,

and by rearranging the terms the following is obtained

lim
n→∞

∣∣∣∣en+1

en

∣∣∣∣ = lim
n→∞

∣∣∣∣ en
en−1

∣∣∣∣α .

Taking the natural logarithm on both sides results in the following

lim
n→∞

ln

∣∣∣∣en+1

en

∣∣∣∣ = lim
n→∞

α · ln
∣∣∣∣ en
en−1

∣∣∣∣ .
Lastly, some algebraic manipulation to isolate α results in the following

α = lim
n→∞

ln |en+1| − ln |en|
ln |en| − ln |en−1|

, (2.1)

which is an expression that provides a practical means to approximate the rate of convergence of a scheme numerically.
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To illustrate the practical use of (2.1), Tables 2.2–2.4 report the computed values of α for each iterative scheme applied
to the test functions, as the iteration index n increases.

Consider the function g1(x) = sin2(x)− x2 + 1 and an initial guess x0 = 2.

Table 2.2: Convergence rates of the Newton’s method and its modifications when applied to g1(x)

n N2 K3 H3 W3
2 1.64537925317609468046 2.56079457487366468627 2.62546244421559160642 2.55613638981442958809
3 1.93264646500319581257 2.97016398131798853299 2.98765000675240477435 2.98700282430320251947
4 1.99639803533054149831 – – –
5 1.92192815536606520510 – – –

Consider the function g2(x) = cos(x)− x and an initial guess x0 = 1.7.

Table 2.3: Convergence rates the of Newton’s method and its modifications when applied to g2(x)

n N2 K3 H3 W3
2 1.51224203202715923311 2.82318988190517750070 2.74168492283772469165 1.76500978241534234314
3 1.99052490015558380954 2.98122120661930267715 – –
4 2.00577450638506826763 – – –

Consider the function g3(x) = xex
2 − sin2(x) + 3 cos(x) + 5 and an initial guess x0 = −2.

Table 2.4: Convergence rates the of Newton’s method and its modifications when applied to g3(x)

n N2 K3 H3 W3
2 1.51266462099767351468 2.52882975731273385023 2.24686992009604935561 1.97880229426542331161
3 1.68141431834645782573 3.27404666620059092708 2.83101320039386950000 2.51851007081365896312
4 1.85585568310294601879 3.05777635057063434942 2.99559208781607688721 2.91843698025694298082
5 1.96338828027112421992 – – 3.00607222682107000367
6 1.99588022621549154856 – – –
7 1.99989185877951536341 – – –

As observed in Tables 2.2–2.4, for the Newton’s method whose convergence rate is theoretically quadratic, α approaches
2 as the iterates converge to the root within the specified tolerance. Similarly, for the modified Newton’s method
schemes whose convergence rate is theoretically cubic, α approaches 3 as the root is approached. This demonstrates
the effectiveness of (2.1) to numerically approximate the rate of convergence of an iterative scheme.
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Chapter 3

Newton’s Methods for Solving Nonlinear
Systems

In this chapter, the discussion is extended to multivariate systems of nonlinear equations. It formulates the generalized
framework for the n-dimensional Newton’s method and its modifications, and validates each scheme through a set of
examples.

3.1 Generalized Setting

In many practical applications, root-finding problems involve a system of nonlinear equations rather than a single
equation. Such systems can be expressed in the general form

F (X) =

f1(x1, . . . , xn)
...

fn(x1, . . . , xn)

 =

0
...
0

 ,

where each function fi(X) is generally nonlinear, making the system significantly more challenging to solve compared
to linear systems.

Unlike linear systems, which can be effectively solved using methods such as Gaussian elimination or LU decomposition,
nonlinear systems require iterative approaches due to their complexity. A natural extension of Newton’s method for a
single equation provides an efficient numerical approach to solving such systems which generalizes the iterative scheme
by incorporating the Jacobian matrix that is given by

J(X) =

∂x1f1(X) · · · ∂xnf1(X)
...

. . .
...

∂x1
fn(X) · · · ∂xn

fn(X)

 .

Similarly, there must exist some δ > 0 such that ||X0 −X∗|| < δ, meaning the initial guess X0 should be sufficiently
close to the actual root X∗ for the scheme to converge, and it is said to converge with order α if there exist positive
constants α and λ such that

lim
n→∞

||en+1||
||en||α

= λ.

Additionally, the rate of convergence could be approximated numerically using

α = lim
n→∞

ln ||en+1|| − ln ||en||
ln ||en|| − ln ||en−1||

.
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3.2 Newton’s Method Extension

In this section, the iterative schemes introduced for 1-dimensional root-finding problems will be extended to n-
dimensional systems.

3.2.1 Newton’s Method: Classical Scheme

The extension of the classical Newton’s method (1.1) to multivariable systems is given by

Xn+1 = Xn − J(Xn)
−1 · F (Xn). (3.1)

3.2.2 Newton’s Method: Kou Modification

The extension of Kou’s modification (1.5) to multivariable systems is given by

Xn+1 = Y n − J(Xn)
−1 · F (Y n), (3.2)

where

Y n = Xn + J(Xn)
−1 · F (Xn).

3.2.3 Newton’s Method: Homeier Modification

The extension of Homeier’s modification (1.12) to multivariable systems is given by

Xn+1 = Xn − J(Y n)
−1 · F (Xn), (3.3)

where

Y n = Xn − 1

2
· J(Xn)

−1 · F (Xn).

3.2.4 Newton’s Method: Weerakoon Modification

The extension of Weerakoon’s modification (1.16) to multivariable systems is given by

Xn+1 = Xn − 2 · (J(Xn) + J(Y n))
−1 · F (Xn), (3.4)

where

Y n = Xn − J(Xn)
−1 · F (Xn).

3.3 Tests and Validation

In this section, the behavior of the Newton’s method and its modifications for nonlinear systems of increasing com-
plexity will be analyzed based on the CPU computation runtime tCPU, and number of iterations required to converge
when the tolerance is set to ϵ = 1× 10−12.

3.3.1 Example 1: System of Two Equations

Consider the two-variable system

F (X) =

(
sin(x1x2) + x3

2 − 4
ex1 + x1 cos(x2)− 2

)
=

(
0
0

)
,

with the Jacobian matrix given by

J(X) =

(
x2 cos(x1x2) x1 cos(x1x2) + 3x2

2

ex1 + cos(x2) −x1 sin(x2)

)
,

and an initial guess X0 = (1 1)t.
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Table 3.1: Performance comparison of the Newton’s method and its modifications when applied to a system of two
nonlinear equations.

n tCPU Xn ||F (Xn)||

N2 5 0.01562500000000000000

(
0.65936106092230228892
1.46985549775510748738

)
0.00000000000000088818

K3 4 0.01562500000000000000

(
0.65936106092230239994
1.46985549775510770942

)
0.00000000000000000000

H3 3 0.01562500000000000000

(
0.65936106092229718190
1.46985549775506685322

)
0.00000000000028466638

W3 4 0.01562500000000000000

(
0.65936106092230239994
1.46985549775510770942

)
0.00000000000000000000

Figure 3.1: Error curves for the Newton’s method and its modifications when applied to a system of two nonlinear
equations.

Table 3.2: Convergence rates of the Newton’s method and its modifications when applied to a system of two nonlinear
equations.

n N2 K3 H3 W3
2 2.79291846005032429190 2.98716605955174019371 2.90698739748779333425 2.92336856132228417593
3 1.74099503487297480042 2.98604855104152111522 – 3.03630699891795075018
4 2.00087687735370511888 – – –

As demonstrated in Table 3.1, the advantage of the Newton’s method modifications over the classical Newton method
extends beyond 1-dimensional root-finding problems to systems of nonlinear equations. Although all four schemes
required similar computational time to converge due to the simplicity of the test problem, the modified schemed
converged in at most four iterations, whereas the classical Newton’s method required five. Furthermore, Table 3.2

21



confirms that the theoretical convergence rates established in earlier sections are preserved when the schemes are
applied to multivariable systems. Additionally, Figure 3.1 illustrates that the error curves for the cubic modifications
exhibit steeper curves, indicating faster convergence.

A common implementation error when applying Newton’s method to systems of nonlinear equations is the use of an
incorrect Jacobian matrix, consider the following Jacobian matrix instead

J(X) =

(
x2 cos(x1x2) x2 cos(x1x2) + 3x2

2

ex1 + cos(x2) −x1 sin(x2)

)
,

which results in the following.

Table 3.3: Performance comparison of the Newton’s method and its modifications when applied to a system of two
nonlinear equations with an incorrect Jacobian matrix.

n tCPU Xn ||F (Xn)||

N2 12 0.01562500000000000000

(
0.65936106092230661879
1.46985549775512036597

)
0.00000000000009059420

K3 14 0.01562500000000000000

(
0.65936106092229385123
1.46985549775508106407

)
0.00000000000018918200

H3 11 0.01562500000000000000

(
0.65936106092228863318
1.46985549775506485481

)
0.00000000000030508929

W3 11 0.01562500000000000000

(
0.65936106092228363718
1.46985549775504975578

)
0.00000000000041255894

Figure 3.2: Error curves for the Newton’s method and its modifications when applied to a system of two nonlinear
equations with an incorrect Jacobian matrix.
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Table 3.4: Convergence rates of the Newton’s method and its modifications when applied to a system of two nonlinear
equations with an incorrect Jacobian matrix.

n N2 K3 H3 W3
2 2.47433154519346842903 1.39284943187978549339 1.25051214940531552067 1.41571707322612616586
3 1.06511631277430884879 0.73557040575698773299 1.01928983905414671796 1.02923014260926648511
...
9 1.00007044705794023720 1.00000810118319605202 1.00115118320413154507 1.00115598751784040665
10 1.00115447296371229413 1.00006855497049707004 1.01971055914327979330 1.01970490895515797369
11 1.01969284606013710359 1.00058797106852392922 – –
12 – 1.00501535817417719798 – –
13 – 1.04565267254673233133 – –

As shown in Table 3.3, implementing Newton’s method with a slightly incorrect Jacobian still leads to convergence
to the root, but requires a significantly greater number of iterations. For example, when the correct Jacobian matrix
is used, all methods converge within five iterations. However, with an incorrect Jacobian, convergence requires at
least twice as many iterations, exceeding ten for both the classical Newton’s method and its modifications. Moreover,
Figure 3.2 and Table 3.4 illustrate that, although convergence is eventually achieved, the rate of convergence becomes
linear rather than quadratic or cubic.

3.3.2 Example 2: System of Three Equations

Consider the three-variable system

F (X) =

 x2
1 + sin(x2x3)− 3

cos(x1) + ex2 − x3
3

x1 + x2 + x3 − ex1x2x3

 =

0
0
0

 ,

with the Jacobian matrix given by

J(X) =

 2x1 x3 cos(x2x3) x2 cos(x2x3)
− sin(x1) ex2 −3x2

3

1− x2x3e
x1x2x3 1− x1x3e

x1x2x3 1− x1x2e
x1x2x3

 ,

and an initial guess X0 = (1 1 1)t.

Table 3.5: Performance comparison of the Newton’s method and its modifications when applied to a system of three
nonlinear equations.

n tCPU Xn ||F (xn)||

N2 7 0.01562500000000000000

1.50766583317275393306
0.64857678244495098330
1.25484098338041372145

 0.00000000000000022204

K3 4 0.01562500000000000000

1.50766583317275393306
0.64857678244495131636
1.25484098338041416554

 0.00000000000000349676

H3 4 0.01562500000000000000

1.50766583317275393306
0.64857678244495098330
1.25484098338041372145

 0.00000000000000022204

W3 4 0.01562500000000000000

1.50766583317275371101
0.64857678244495098330
1.25484098338041372145

 0.00000000000000108779
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Figure 3.3: Error curves for the Newton’s method and its modifications when applied to a system of two nonlinear
equations.

Table 3.6: Convergence rates of the Newton’s method and its modifications when applied to a system of three nonlinear
equations.

n N2 K3 H3 W3
2 2.02681433753216788674 5.64228532268375904124 3.52762641730369574944 3.19770726079867628755
3 1.49855229171175130531 2.34762091636102487868 2.78473857578697492343 2.83975097049805569327
4 2.23589651268094291581 – – –
5 1.99315648481491192179 – – –
6 2.00016937192150434655 – – –

Building on the previous example, Table 3.5 shows that the advantage of the modified Newton’s methods over the
classical scheme also extends to systems involving three equations. While all four methods require comparable com-
putational time, again reflecting the relative simplicity of the problem, the modified schemes converge in at most four
iterations, whereas the classical Newton’s method requires seven. This performance difference is further supported
by Figure 3.3, where the error curves for each cubic modification exhibit a steeper decline compared to the classical
method. Additionally, Table 3.6 confirms that the theoretical orders of convergence are preserved.
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3.3.3 Example 3: System of Four Equations

Consider the four-variable system

F (X) =


x3
1 − x2x3 + sin(x4)− 1
ex2 + cos(x3)− x1x4

x2 sin(x1) + x2
3 − x3

4 + 2
x1 + x2 + x3 + x4

 =


0
0
0
0

 ,

with the Jacobian matrix given by

J(X) =


3x2

1 −x3 −x2 cos(x4)
−x4 ex2 − sin(x3) −x1

x2 cos(x1) sin(x1) 2x3 −3x2
4

1 1 1 1

 ,

and an initial guess X0 = (1 1 1 1)t.

Table 3.7: Performance comparison of the Newton’s method and its modifications when applied to a system of four
nonlinear equations.

n tCPU Xn ||F (Xn)||

N2 8 0.01562500000000000000


1.00513291080073141615
−1.44293561798560543430
−0.61171044542410279998
1.04951315260897670711

 0.00000000000000049651

K3 9 0.01562500000000000000


1.00513291080073141615
−1.44293561798560521225
−0.61171044542410279998
1.04951315260897648507

 0.00000000000000074476

H3 6 0.01562500000000000000


1.00513291080073141615
−1.44293561798560521225
−0.61171044542410279998
1.04951315260897648507

 0.00000000000000074476

W3 7 0.01562500000000000000


1.00513291080073141615
−1.44293561798560521225
−0.61171044542410291101
1.04951315260897670711

 0.00000000000000022204
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Figure 3.4: Error curves for the Newton’s method and its modifications when applied to a system of two nonlinear
equations.

Table 3.8: Convergence rates of the Newton’s method and its modifications when applied to a system of four nonlinear
equations.

n N2 K3 H3 W3
2 0.52613239625398733335 1.52370184489422366703 1.62472257063293645807 -1.05202205106332402629
3 2.12342431258000274852 1.29649819228622686929 2.44327408769046883208 -0.90176172182205605043
4 1.65500062252773094684 2.48435384383253987650 3.06250544447473682652 1.10196169322217074615
5 2.65500062252773094684 0.56120325094096445984 2.79882911583742233219 3.45610879265566284246
6 1.67254414589940569869 4.12428475605311817276 – 3.05487768958442629241
7 2.14836007278489748984 3.13184767585827783520 – –
8 – 3.14078662206505354604 – –

Extending the analysis to a system of four equations, Table 3.7 demonstrates that the Newton’s method modifications
continue to outperform the classical scheme, converging in 4 to 5 iterations compared to 8 for the classical scheme,
while maintaining similar CPU times. Furthermore, Figure 3.4 and Table 3.8 show that the faster error decay and
higher convergence orders observed in lower dimensional cases are preserved as the system’s dimension increases.
These results reinforce the efficiency of the modified schemes, highlighting their consistent advantages across systems
of nonlinear equation of increasing complexity.
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Chapter 4

Initial Value Problems

In this chapter, the Newton’s method and its modification are extended beyond algebraic equations to address initial
value problems involving ordinary differential equations. By formulating fully implicit schemes, the schemes are
employed to solve nonlinear systems arising from the discretization of the initial value problem. The chapter presents
two applications to demonstrate the practical implementation and effectiveness of these iterative schemes in solving
time-dependent problems.

4.1 Fully Implicit Discretization of Initial Value Problems

In many real-life applications, mathematical models are often expressed as a system of ordinary differential equations
in an initial value problem, rather than a straightforward system of nonlinear equations. An initial value problem is
generally expressed in the form

dy

dt
= f(t, y) with

{
a ≤ t ≤ b

y(a) = α
,

where y(t) is the unknown solution with the initial condition y(a) = α. In many cases, an exact analytical solution
to the initial value problem does not exist or is difficult to obtain, as a result, numerical approximations are often
employed. A common approach to approximating the solution of an initial value problem is Euler’s method. The
method is derived by discretizing the time interval [a, b] intoN+1 mesh points given by tj = a+jh, where h = (b−a)/N
is the step size, and N is a positive integer. By performing a 1st order Taylor expansion of y(tj) around the point
tj+1, the following is obtained

y(tj) = y(tj+1)− hf(tj+1, y(tj+1)) +O(h2).

Since the step size h is typically chosen to be very small, the remainder term O(h2) is sufficiently small to be neglected.
This results in an approximation wj of the solution y(ji) at discrete mesh points given by

w0 = α

wj+1 = wj + f(tj+1, wj+1)

which is the backward Euler’s method. It is important to note that in order to apply Euler’s method, the initial value
problem must be well-posed, meaning a unique solution exists and continuously depends on the initial condition. Let

D = {(t, y) : a ≤ t ≤ b and −∞ < y < ∞},

if f(t, y) is continuous in D and satisfies Lipschitz condition on y in D, that is

|f(t, yi)− f(t, yj)| ≤ L|yi − yj |

for some constant L, then the initial value problem is well-posed. In contrast to the forward Euler’s method, which
is an explicit scheme that is only conditionally stable depending on the step size, the backward Euler method is an
implicit scheme that requires solving an equation at each step. Despite the additional computational cost, it offers
superior numerical stability as it is A-stable, meaning it is unconditionally stable.
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In the case of a system of differential equation, the initial value problem is of the general form

dy1
dt

=f1(t, y1, . . . yn)

...

dyn
dt

=fn(t, y1, . . . yn)

with


a ≤ t ≤ b

y1(a) = α1

...

yn(a) = αn

.

Let wi,j be the approximation of yi(tj), the backward Euler’s method is implemented as follows

wi,0 = αi

wi,j+1 = wi,j + hfi(tj+1, w1,j+1, . . . , wn,j+1)

Similarly, the initial value problem must be well-posed in order to implement the backward Euler’s method. This is
ensured when each function fi(t, y1, . . . yn) is continuous in

D = {(t, y1, . . . yn) : a ≤ t ≤ b and −∞ < yi < ∞, for all i},

and satisfies Lipschitz condition in the variables yi, . . . , yn on D, that is

|fi(t, y1, . . . yn)− fi(t, z1, . . . zn)| ≤ L

n∑
i=1

|yi − zi|

for some constant L, for all i. Due to the implicit nature of the backward Euler’s method, it requires solving a system
of equations at each mesh point. Let W j = (w1,j , · · · , wn,j)

t be the vector of unknowns at discrete time tj . For any
tj , W j is known and the system to be solved is given by

F (W j+1) =

w1,j+1 − w1,j − hf1(W j+1)
...

wn,j+1 − wn,j − hfn(W j+1)

 ≡

g1(W j+1)
...

gn(W j+1)

 =

0
...
0

 .

The corresponding Jacobian matrix writes

J(W j+1) =

∂w1,j+1
g1(W j+1) · · · ∂wn,j+1

g1(W j+1)
...

. . .
...

∂w1,j+1
gn(W j+1) · · · ∂wn,j+1

gn(W j+1)

 .

This formulation allows the use of Newton’s method to iteratively solve for W j+1 at each step.
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4.2 Applications

4.2.1 System of Ordinary Differential Equations with Exact Analytical Solution

Consider the initial value problem for a system of two ordinary differential equations

dy1
dt

= −y1 + y1y2

dy2
dt

= −y2

with


0 ≤ t ≤ 5

y1(0) = 2

y2(0) = 2.5

,

which has an exact solution given by

y1(t) = 2e−te2.5(1−e−t)

y2(t) = 2.5e−t.

Let wi,j denote the approximation of yi(tj). Using the backward Euler’s method, the approximations are given by

w1,j+1 = w1,j + h(−w1,j+1 + w1,j+1w2,j+1),

w2,j+1 = w2,j − hw2,j+1,

with

w1,0 = 2,

w2,0 = 2.5.

The time interval [0, 5] is discretized into N = 500 subintervals, resulting in a uniform time step size of h = 0.01. The
resulting mesh points are defined by tj = 0.01j. At any tj , W j is known and the discretized nonlinear system is given
by

F (W j+1) =

(
w1,j+1 − w1,j + h(w1,j+1 − w1,j+1w2,j+1)

w2,j+1 − w2,j+1 + hw2,j+1

)
=

(
0
0

)
.

The corresponding Jacobian matrix is given by

J(W j+1) =

(
1 + h(1− w2,j+1) −hw1,j+1

0 1 + h

)
.

Note that, at any tj , the approximated W j will be employed as an initial guess when computing solution W j+1.
Table 4.1 presents the results, where n represents the total number of iterations required to converge to t within a
tolerance of ϵ = 1× 10−12, summed over the entire time interval. The term ||F (W n)|| represents the residual error at
the root of the system at each mesh point, summed over the entire time interval as well.

Table 4.1: Performance comparison of the Newton’s method and its modifications in solving an initial value problem
for a system of two ordinary differential equations using the backward Euler’s method.

n tCPU ||F (W n)||

N2 1000 1.51562500000000000000 0.00000000000003656881

K3 813 0.57812500000000000000 0.00000000003568973799

H3 788 0.62500000000000000000 0.00000000003580280390

W3 788 0.62500000000000000000 0.00000000003580283165
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Figure 4.1: Comparison between the exact solution y1(t) and the numerical solutions w1(tj) obtained using the
Newton’s method and its modifications.

Figure 4.2: Comparison between the exact solution y2(t) and the numerical solutions w2(tj) obtained using the
Newton’s method and its modifications.

In earlier sections, comparisons between the classical Newton’s method and its modifications revealed slight differences
in convergence iterations and computational time, which is due to the simplicity of the test problems. However, in
the context of initial value problems, where the Newton’s method must be applied iteratively at each mesh point, the
difference in performance becomes significant. This difference grows exponentially when considering complex initial
value problems involving even more ordinary differential equations. As demonstrated in Table 4.1, the Newton’s
method requires 1,000 iterations to approximate the solution, whereas its modifications achieve comparable results
in approximately 800 iterations with less than half the computational time. While the total error for the Newton’s
method is marginally smaller than that of its modifications, both the Newton’s method and its modifications result
in approximations of comparable quality, as illustrated in Figures 4.1 and 4.2. This demonstrates that even though
the modification might not result in improved accuracy, they allow faster convergence at a lower computational cost
in many cases.

30



4.2.2 Mathematical Model for the Activation of Cardiac Muscle

Mathematical models play an important role in biomedical research by providing a structured way to understand
complex biological processes. By formulating biological phenomena as mathematical problems, researchers can study
system dynamics, make predictions, and evaluate hypotheses that may be difficult or even impossible to test exper-
imentally. Among the various types of models, those based on initial value problems are particularly valuable, as
they capture the time-dependent evolution of biological variables, such as those involved in disease progression, organ
function, or cellular interactions.

An important area of application is cardiac biomechanics, where understanding the interplay between mechanical forces
and biochemical signals within heart cells is critical. A study presented in [2] examined the influence of fluid–structure
interactions and calcium dynamics on myocardial contraction at the cellular level. The aim was to simulate the prop-
agation of calcium concentrations within the cell and their role in initiating contraction. Calcium serves as a key
regulatory signal in heart muscle activation, and its dynamics can be effectively described using a reaction-diffusion
framework. Using a reaction-diffusion model, the time-dependent changes in calcium concentration in both the cytosol
and sarcoplasmic reticulum can be analyzed.

In the study, we consider a model formulated as a system of three ordinary differential equations that define an initial
value problem. Let y1(t) denote the concentration of cytosolic calcium, which acts as a trigger signal and regulates the
timing and intensity of muscle contraction. Let y2(t) denote the concentration of sarcoplasmic calcium, which serves
as an internal reservoir responsible for the release of calcium that elevates the cytosolic concentration. Finally, let γ(t)
represent the activation signal. The initial value problem is then given by

dy1
dt

= v1 −
v2y

2
1

k1 + y21
+

v3y
4
1y

2
2

(k2 + y22)(k3 + y41)
− v4y1

dy2
dt

=
v2y

2
1

k1 + y21
− v3y

4
1y

2
2

(k2 + y22)(k3 + y41)
− v5y2

dγ

dt
= −d1y1 − d2γ

with


0 ≤ t ≤ 5

y1(0) = 0

y2(0) = 1.5

γ(0) = 0

.

Table 4.2: Model parameters.

v1 v2 v3 v4 v5

1.58
µM
s 16

µM
s 91

µM
s 2 s−1 0.2 s−1

k1 k2 k3 d1 d2

1 µM 4 µM2 0.7841 µM4 0.5 1
µMs 2.5 1

s

Let w1,j and w2,j denote the approximations of y1(tj) and y2(tj), respectively, and let w3,j denote the approximation
of γ(tj). Using the backward Euler method, the discretized problem is given by

w1,j+1 = w1,j + h

(
v1 −

v2w
2
1,j+1

k1 + w2
1,j+1

+
v3w

4
1,j+1w

2
2,j+1

(k2 + w2
2,j+1)(k3 + w4

1,j+1)
− v4w1,j+1

)
,

w2,j+1 = w2,j + h

(
v2w

2
1,j+1

k1 + w2
1,j+1

−
v3w

4
1,j+1w

2
2,j+1

(k2 + w2
2,j+1)(k3 + w4

1,j+1)
− v5w2,j+1

)
,

w3,j+1 = w3,j − h (d1w1,j+1 + d2w3,j+1) ,
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with

w1,0 = 0,

w2,0 = 1.5,

w3,0 = 0.

The time interval [0, 50] is uniformly discretized into N = 5000 subintervals, yielding a time step size of h = 0.01.
The corresponding mesh points are given by tj = 0.01j. At any tj , the discretized system using the backward Euler
method reduces to the nonlinear system

F (W j+1) =



w1,j+1 − w1,j − h

(
v1 −

v2w
2
1,j+1

k1 + w2
1,j+1

+
v3w

4
1,j+1w

2
2,j+1

(k2 + w2
2,j+1)(k3 + w4

1,j+1)
− v4w1,j+1

)

w2,j+1 − w2,j − h

(
v2w

2
1,j+1

k1 + w2
1,j+1

−
v3w

4
1,j+1w

2
2,j+1

(k2 + w2
2,j+1)(k3 + w4

1,j+1)
− v5w2,j+1

)
w3,j+1 − w3,j + h (d1w1,j+1 + d2w3,j+1)


=



0

0

0


.

The corresponding Jacobian matrix given by

J(W j+1) =

∂w1,j+1g1(W j+1) ∂w2,j+1g1(W j+1) 0
∂w1,j+1g2(W j+1) ∂w2,j+1g2(W j+1) 0

hd1 0 1 + hd2

 ,

where

∂w1,j+1g1(W j+1) = 1− h

(
(4v3w

3
1,j+1w

2
2,j+1)(k2 + w2

2,j+1)(k3 + w4
1,j+1)− (4v3w

7
1,j+1w

2
2,j+1)(k2 + w2

2,j+1)

((k2 + w2
2,j+1)(k3 + w4

1,j+1))
2

− 2v2k1w1,j+1

(k1 + w2
1,j+1)

2
+ v4

)
,

∂w2,j+1
g1(W j+1) = −h

(
(2v3w

4
1,j+1w2,j+1)(k2 + w2

2,j+1)(k3 + w4
1,j+1)− (2v3w

4
1,j+1w

3
2,j+1)(k3 + w4

1,j+1)

((k2 + w2
2,j+1)(k3 + w4

1,j+1))
2

)
,

∂w1,j+1
g2(W j+1) = −h

(
2v2k1w1,j+1

(k1 + w2
1,j+1)

2
+

(4v3w
7
1,j+1w

2
2,j+1)(k2 + w2

2,j+1)− (4v3w
3
1,j+1w

2
2,j+1)(k2 + w2

2,j+1)(k3 + w4
1,j+1)

((k2 + w2
2,j+1)(k3 + w4

1,j+1))
2

)
,

∂w2,j+1g2(W j+1) = 1− h

(
(2v3w

4
1,j+1w

3
2,j+1)(k3 + w4

1,j+1)− (2v3w
4
1,j+1w2,j+1)(k2 + w2

2,j+1)(k3 + w4
1,j+1)

((k2 + w2
2,j+1)(k3 + w4

1,j+1))
2

)
.

Similarly, the approximation W j will be employed as an initial guess when approximating solution W j+1. Using the
physiological model parameters listed in Table 4.2, the problem is solved over the entire time interval by employing
Newton method and its variants. Table 4.3 presents the total number of linear system solves, the CPU time, and the
final residuals for each method.

Table 4.3: Performance comparison of the Newton’s method and its modifications in solving the cardiac muscle
activation model using the backward Euler’s method.

n tCPU ||F (W n)||

N2 37159 14.99694000000000000000 0.00000000105357026669

K3 46840 31.87500000000000000000 0.00000000159726264971

H3 37165 15.08736000000000000000 0.00000000105190078628

W3 37152 14.93750000000000000000 0.00000000106154287709
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The results demonstrate the performance of the Newton’s method. The classical Newton’s method required approx-
imately 37000 iterations and 15 seconds of CPU time, while Homeier’s and Weerakoon’s modifications performed
similarly, with approximately 37000 iterations, and comparable CPU times. In contrast, Kou’s modification exhibited
notably poorer efficiency, demanding 46,840 iterations and 31.875 seconds of CPU time. It is important to note that
these results are preliminary. Due to the limited time frame, the impact of the time step size has not been explored.
However, it is anticipated that increasing the time step may lead to improved performance of the Newton variants in
terms of CPU time, consistent with the results present in Table 4.1.

Figure 4.3: Time evolution of the approximated solutions w1(tj) using the Newton’s method and its modifications.

Figure 4.4: Time evolution of the approximated solutions w2(tj) using the Newton’s method and its modifications.
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Figure 4.5: Time evolution of the approximated solutions w3(tj) using the Newton’s method and its modifications.

As illustrated in Figures 4.3–4.5, the functions yi(t) for all i exhibit perfectly periodic oscillations rather than converging
to a steady state, indicating the model’s intrinsic limit-cycle behavior. Physiologically, this mimics a heart cell’s beat.
In each cycle, y1(t) jumps up rapidly and peaks at approximately 1.67 when cytosolic calcium is released from the
cell’s storage compartment and then falls more slowly as the cell pumps the calcium out. At the same time, the storage
level y2(t) plunges to approximately 0.80 during release and then refills during the resting phase where it peaks at
approximately 2.32. The activation signal γ(t) peaks shortly after the calcium spike—reflecting the finite time needed
to switch the contractile machinery on—and then returns to zero as the cell relaxes.

Figure 4.6: Time evolution of the approximated solutions w1(tj), w2(tj), and w3(tj) using Weerakoon’s modification
on the interval [30, 50].

Figure 4.6 highlits the rhythmic oscillations essential for simulating heart muscle contractions. This visualization
confirms the synchronized interplay of these variables, as their periodic behavior, previously observed in individual
time-series plots, sustains the system’s stable, repetitive dynamics. In the overlaid time-series of w1(t), w2(t), and
γ(t), the tight coupling among cytosolic calcium release, sarcoplasmic calcium refilling, and contractile activation is
even more apparent. As w1 spikes, γ follows after a constant delay, and w2 reaches its minimum exactly when w1
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peaks. The loop then closes as γ falls and w2 begins to rise, showing a tightly locked sequence.

Figure 4.7: Phase plot of w2(tj) versus w1(tj) over the time interval [0, 50].

Figure 4.7 shows the sarcoplasmic calcium load w2 plotted against cytosolic calcium w1 over one full cycle. The
trajectory is a closed, clockwise loop, as w1 rises, w2 falls sharply during calcium release, once w1 peaks and begins
to decline, w2 then refills more slowly.
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Conclusion

This project has explored the classical Newton’s method and its modifications, which were proposed by Kou, Homeier,
and Weerakoon, for solving root-finding problems. The theoretical analysis established that the classical Newton’s
method achieves quadratic convergence, while the modified schemes attain cubic convergence, as demonstrated through
rigorous proofs using Taylor expansions. Numerical testing on single-variable functions, systems of nonlinear equa-
tions, and initial value problems confirmed the superior efficiency of the modified methods, which consistently required
fewer iterations and lower computational time in most cases when compared to the classical approach.

The application of these methods to systems of nonlinear equations highlighted the robustness of the cubic schemes
which exhibited faster convergence and preserved third-order convergence even in higher-dimensional problems. The
analysis of initial value problems, including a system of ordinary differential equations and a cardiac muscle activation
model, further highlighted the practical advantages of the modified methods. In the context of the cardiac model, the
Weerakoon modification proved particularly efficient, accurately capturing the periodic calcium dynamics critical to
myocardial contraction with reduced computational cost.

Despite these advantages, the performance of the modified methods can vary depending on the problem’s complexity
and the choice of initial guesses, as observed in the cardiac model where Kou’s modification underperformed. Addi-
tionally, the sensitivity of all methods to the accuracy of the Jacobian matrix was evident, with incorrect Jacobian
matrices leading to slower, linear convergence. These findings suggest that while the modified Newton’s methods of-
fer significant improvements, careful implementation and problem-specific tuning are essential for optimal performance.

In conclusion, the enhanced Newton’s methods schemes explored in this project provide powerful tools for efficiently
solving complex root-finding problems in biomedical applications. Their ability to achieve higher-order convergence
and handle intricate systems makes them invaluable for computational mathematics and scientific computing. Future
work could explore applications to numerically solve partial differential equations, as well as adaptive initial guess
strategies to further improve convergence and robustness, particularly for highly nonlinear biomedical models.
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Appendices

The appendix includes the main Matlab scripts for solving root-finding problems using Newton’s method and its
variants by Kou, Homeier, and Weerakoon. It also contains code for solving nonlinear systems with Newton’s method
and the model simulating the cardiac muscle activation.

Appendix A: Newton’s Method MATLAB Code

function [xNewtons, x_nNewtons, e_nNewtons] = newtonsMethod(func, funcDerivative, x0, Tolerance, maxK)

% func is the function and funcDerivative is the functions derivative

% x0 is the initial guess for the Newtons method

% Tolerance is the error tolernce for convergence

% maxK is the maximum number of iterations

% x_nNewtons is the sequence generated by the Newtons method

% e_nNewtons is the residual error of the sequence

% xNewtons is the root the sequence converges to within the error tolerance

fprintf("\nNewtons Method\n")

x = x0;

x_nNewtons = [];

e_nNewtons = [];

xNewtons = 0;

for K = 1:maxK

x = x - func(x) / funcDerivative(x);

x_nNewtons(K) = x;

e_nNewtons(K) = abs(func(x));

fprintf("x_%d: %.20f \t Error: %.20f\n", K, x_nNewtons(K), e_nNewtons(K))

if abs(func(x)) <= Tolerance

xNewtons = x;

fprintf("The method converged to root %.20f in %d iterations within %.20f tolerance.\n",

xNewtons, K, Tolerance)

return;

end

end

fprintf("The method didnt converge within the maxmimum number of iterations with the desired

tolerance.\n")

end
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Appendix B: Newton’s Method: Kou Modification MATLAB Code

function [xKou, x_nKou, e_nKou] = kouNewtonsMethod(func, funcDerivative, x0, Tolerance, maxK)

% func is the function and funcDerivative is the functions derivative

% x0 is the initial guess for the Newtons method

% Tolerance is the error tolernce for convergence

% maxK is the maximum number of iterations

% x_nKou is the sequence generated by Kous modification to the Newtons method

% e_nKou is the residual error of the sequence

% xKou is the root the sequence converges to within the error tolerance

fprintf("\nNewtons Method: Kou Modification\n")

x = x0;

xKou = 0;

x_nKou = [];

e_nKou = [];

for K = 1:maxK

y = x + func(x) / funcDerivative(x);

x = y - func(y) / funcDerivative(x);

x_nKou(K) = x;

e_nKou(K) = abs(func(x));

fprintf("x_%d: %.20f \t Error: %.20f\n", K, x_nKou(K), e_nKou(K));

if abs(func(x)) <= Tolerance

xKou = x;

fprintf("The method converged to root %.20f in %d iterations within %.20f tolerance.\n", xKou,

K, Tolerance);

return;

end

end

fprintf("The method didnt converge within the maxmimum number of iterations with the desired

tolerance.\n")

end
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Appendix C: Newton’s Method: Homeier Modification MATLAB Code

function [xHomeier, x_nHomeier, e_nHomeier] = homeierNewtonsMethod(func, funcDerivative, x0, Tolerance,

maxK)

% func is the function and funcDerivative is the functions derivative

% x0 is the initial guess for the Newtons method

% Tolerance is the error tolernce for convergence

% maxK is the maximum number of iterations

% x_nHomeier is the sequence generated by Homeiers modification to the Newtons method

% e_nHomeier is the residual error of the sequence

% xHomeier is the root the sequence converges to within the error tolerance

fprintf("\nNewtons Method: Homeier Modification\n")

x = x0;

xHomeier = 0;

x_nHomeier = [];

e_nHomeier = [];

for K = 1:maxK

y = x - 1 / 2 * func(x) / funcDerivative(x);

x = x - func(x) / funcDerivative(y);

x_nHomeier(K) = x;

e_nHomeier(K) = abs(func(x));

fprintf("x_%d: %.20f \t Error: %.20f\n", K, x_nHomeier(K), e_nHomeier(K));

if abs(func(x)) <= Tolerance

xHomeier = x;

fprintf("The method converged to root %.20f in %d iterations within %.20f tolerance.\n",

xHomeier, K, Tolerance);

return;

end

end

fprintf("The method didnt converge within the maxmimum number of iterations with the desired

tolerance.\n")

end
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Appendix D: Newton’s Method: Weerakoon Modification MATLAB Code

function [xWeerakoon, x_nWeerakoon, e_nWeerakoon] = weerakoonNewtonsMethod(func, funcDerivative, x0,

Tolerance, maxK)

% func is the function and funcDerivative is the function’s derivative

% x0 is the initial guess for the Newton’s method

% Tolerance is the error tolernce for convergence

% maxK is the maximum number of iterations

% x_nWeerakoon is the sequence generated by Weerakoon’s modification to the Newton’s method

% e_nWeerakoon is the residual error of the sequence

% xWeerakoon is the root the sequence converges to within the error tolerance

fprintf("\nNewtons Method: Weerakoon Modification\n")

x = x0;

xWeerakoon = 0;

x_nWeerakoon = [];

e_nWeerakoon = [];

for K = 1:maxK

y = x - func(x) / funcDerivative(x);

x = x - 2*func(x) / (funcDerivative(x) + funcDerivative(y));

x_nWeerakoon(K) = x;

e_nWeerakoon(K) = abs(func(x));

fprintf("x_%d: %.20f \t Error: %.20f\n", K, x_nWeerakoon(K), e_nWeerakoon(K));

if abs(func(x)) <= Tolerance

xWeerakoon = x;

fprintf("The method converged to root %.20f in %d iterations within %.20f tolerance.\n",

xWeerakoon, K, Tolerance);

return;

end

end

fprintf("The method didn’t converge within the maxmimum number of iterations with the desired

tolerance.\n")

end

Appendix E: Error Plot MATLAB Code

function errorPlot(e_nNewtons, e_nKou, e_nHomeier, e_nWeerakoon)

figure;

semilogy(1:length(e_nNewtons), e_nNewtons, ’+-’, ’DisplayName’, ’N2’);

hold on;

semilogy(1:length(e_nKou), e_nKou, ’+-’, ’DisplayName’, ’K3’);

semilogy(1:length(e_nHomeier), e_nHomeier, ’+-’, ’DisplayName’, ’H3’);

semilogy(1:length(e_nWeerakoon), e_nWeerakoon, ’+-’, ’DisplayName’, ’W3’);

hold off;

xlabel(’n’);

ylabel(’log|f(x_n)|’);

legend(’Location’, ’best’);

grid on;

end
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Appendix F: System of Equations Newton’s Method MATLAB Code

function [xNewtons, x_nNewtons, e_nNewtons, K] = systemNewtonsMethod(func, funcDerivative, x0, Tolerance,

maxK)

% func is the array consisting of the system of functions and funcDerivative is its Jacobian

% x0 is the initial guess for the Newtons method

% Tolerance is the error tolernce for convergence

% maxK is the maximum number of iterations

% x_nNewtons is the sequence generated by the Newtons method

% e_nNewtons is the residual error of the sequence

% xNewtons is the root the sequence converges to within the error tolerance

fprintf("\nNewtons Method: System of Equations\n")

x = x0;

x_cell = num2cell(x);

x_nNewtons = [];

e_nNewtons = [];

xNewtons = zeros(length(x0),1);

for K = 1:maxK

if det(feval(funcDerivative, x_cell{:})) ~= 0

x = x - inv(feval(funcDerivative, x_cell{:})) * feval(func, x_cell{:});

x_cell = num2cell(x);

x_nNewtons = [x_nNewtons, x];

e_nNewtons = [e_nNewtons, norm(feval(func, x_cell{:}))];

fprintf("x_%d:\n", K)

fprintf("%.20f\n", x_nNewtons(:,K))

fprintf("Error: %.20f\n", e_nNewtons(K))

if norm(feval(func, x_cell{:})) <= Tolerance

xNewtons = x;

fprintf("The method converged to root\n")

fprintf("%.20f\n", xNewtons)

fprintf("in %d iterations within %.20f tolerance.\n", K, Tolerance)

return;

end

else

fprintf("The Jacobian can’t be inverted hence the algorithm is terminated")

xNewtons = NaN

return;

end

end

fprintf("The method didnt converge within the maxmimum number of iterations with the desired

tolerance.\n")

end
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Appendix G: System of Three Ordinary Differential Equations MATLAB
Code

% System of Three Ordinary Differential Equations Initial Value Problem

a = 0;

b = 50;

N = 5000;

h = (b - a) / N;

t = linspace(a, b, N+1);

alpha1 = 0;

alpha2 = 1.5;

alpha3 = 0;

Tolerance = 1e-12;

maxK = 1000;

v1 = 1.58;

v2 = 16;

v3 = 91;

v4 = 2;

v5 = 0.2;

k1 = 1;

k2 = 4;

k3 = 0.7841;

d1 = 0.5;

d2 = 2.5;

% Newton’s Method

wNewtons = [alpha1; alpha2; alpha3];

w1Newtons = [alpha1];

w2Newtons = [alpha2];

w3Newtons = [alpha3];

totalIterations = 0;

totalError = 0;

T = cputime;

for i = 1:N

fprintf("\nIteration %d:\n", i)

a1 = wNewtons(1);

a2 = wNewtons(2);

a3 = wNewtons(3);

func = @(w1, w2, w3) [

w1 - a1 - h*(v1 - (v2*w1^2)/(k1+w1^2) + (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v4*w1);

w2 - a2 - h*((v2*w1^2)/(k1+w1^2) - (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v5*w2);

w3 - a3 + h*(d1*w1 + d2*w3);

];

funcDerivative = @(w1, w2, w3) [

1 - h*(((4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 + w1^4) - (4*v3*w1^7*w2^2)*(k2 + w2^2))/((k2 + w2^2)*(k3 +

w1^4))^2 - (2*v2*k1*w1)/(k1^2 + w1^2)^2 + v4), - h*(((2*v3*w1^4*w2)*(k2 + w2^2)*(k3 + w1^4) -

(2*v3*w1^4*w2^3)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

- h*((2*v2*k1*w1)/(k1^2 + w1^2)^2 + ((4*v3*w1^7*w2^2)*(k2 + w2^2) - (4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 +

w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 1 - h*(((2*v3*w1^4*w2^3)*(k3 + w1^4) - (2*v3*w1^4*w2)*(k2 +

w2^2)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

h*d1, 0, 1 + h*d2

];

w0 = wNewtons;

[xNewtons, x_nNewtons, e_nNewtons, K] = systemNewtonsMethod(func, funcDerivative, w0, Tolerance, maxK);

wNewtons = xNewtons;

w1Newtons = [w1Newtons, wNewtons(1)];
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w2Newtons = [w2Newtons, wNewtons(2)];

w3Newtons = [w3Newtons, wNewtons(3)];

totalIterations = totalIterations + length(e_nNewtons);

totalError = totalError + e_nNewtons(length(e_nNewtons));

end

fprintf("\nElapsed Time: %.20f\n", cputime - T);

fprintf("\nTotal Iterations: %d\n", totalIterations);

fprintf("\nTotal Error: %.20f\n", totalError);

% Newton’s Method: Kou Modification

wKou = [alpha1; alpha2; alpha3];

w1Kou = [alpha1];

w2Kou = [alpha2];

w3Kou = [alpha3];

totalIterations = 0;

totalError = 0;

T = cputime;

for i = 1:N

fprintf("\nIteration %d:\n", i)

ti = a + i*h;

a1 = wKou(1);

a2 = wKou(2);

a3 = wKou(3);

func = @(w1, w2, w3) [

w1 - a1 - h*(v1 - (v2*w1^2)/(k1+w1^2) + (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v4*w1);

w2 - a2 - h*((v2*w1^2)/(k1+w1^2) - (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v5*w2);

w3 - a3 + h*(d1*w1 + d2*w3);

];

funcDerivative = @(w1, w2, w3) [

1 - h*(((4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 + w1^4) - (4*v3*w1^7*w2^2)*(k2 + w2^2))/((k2 + w2^2)*(k3 +

w1^4))^2 - (2*v2*k1*w1)/(k1^2 + w1^2)^2 + v4), - h*(((2*v3*w1^4*w2)*(k2 + w2^2)*(k3 + w1^4) -

(2*v3*w1^4*w2^3)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

- h*((2*v2*k1*w1)/(k1^2 + w1^2)^2 + ((4*v3*w1^7*w2^2)*(k2 + w2^2) - (4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 +

w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 1 - h*(((2*v3*w1^4*w2^3)*(k3 + w1^4) - (2*v3*w1^4*w2)*(k2 +

w2^2)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

h*d1, 0, 1 + h*d2

];

w0 = wKou;

[xKou, x_nKou, e_nKou] = systemKouNewtonsMethod(func, funcDerivative, w0, Tolerance, maxK);

wKou = xKou;

w1Kou = [w1Kou, wKou(1)];

w2Kou = [w2Kou, wKou(2)];

w3Kou = [w3Kou, wKou(3)];

totalIterations = totalIterations + length(e_nKou);

totalError = totalError + e_nKou(length(e_nKou));

end

fprintf("\nElapsed Time: %.20f\n", cputime - T);

fprintf("\nTotal Iterations: %d\n", totalIterations);

fprintf("\nTotal Error: %.20f\n", totalError);

% Newton’s Method: Homeier Modification

wHomeier = [alpha1; alpha2; alpha3];

w1Homeier = [alpha1];

w2Homeier = [alpha2];

w3Homeier = [alpha3];

totalIterations = 0;

totalError = 0;

T = cputime;

for i = 1:N
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fprintf("\nIteration %d:\n", i)

ti = a + i*h;

a1 = wHomeier(1);

a2 = wHomeier(2);

a3 = wHomeier(3);

func = @(w1, w2, w3) [

w1 - a1 - h*(v1 - (v2*w1^2)/(k1+w1^2) + (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v4*w1);

w2 - a2 - h*((v2*w1^2)/(k1+w1^2) - (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v5*w2);

w3 - a3 + h*(d1*w1 + d2*w3);

];

funcDerivative = @(w1, w2, w3) [

1 - h*(((4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 + w1^4) - (4*v3*w1^7*w2^2)*(k2 + w2^2))/((k2 + w2^2)*(k3 +

w1^4))^2 - (2*v2*k1*w1)/(k1^2 + w1^2)^2 + v4), - h*(((2*v3*w1^4*w2)*(k2 + w2^2)*(k3 + w1^4) -

(2*v3*w1^4*w2^3)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

- h*((2*v2*k1*w1)/(k1^2 + w1^2)^2 + ((4*v3*w1^7*w2^2)*(k2 + w2^2) - (4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 +

w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 1 - h*(((2*v3*w1^4*w2^3)*(k3 + w1^4) - (2*v3*w1^4*w2)*(k2 +

w2^2)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

h*d1, 0, 1 + h*d2

];

w0 = wHomeier;

[xHomeier, x_nHomeier, e_nHomeier] = systemHomeierNewtonsMethod(func, funcDerivative, w0, Tolerance,

maxK);

wHomeier = xHomeier;

w1Homeier = [w1Homeier, wHomeier(1)];

w2Homeier = [w2Homeier, wHomeier(2)];

w3Homeier = [w3Homeier, wHomeier(3)];

totalIterations = totalIterations + length(e_nHomeier);

totalError = totalError + e_nHomeier(length(e_nHomeier));

end

fprintf("\nElapsed Time: %.20f\n", cputime - T);

fprintf("\nTotal Iterations: %d\n", totalIterations);

fprintf("\nTotal Error: %.20f\n", totalError);

% Newton’s Method: Weerakoon Modification

wWeerakoon = [alpha1; alpha2; alpha3];

w1Weerakoon = [alpha1];

w2Weerakoon = [alpha2];

w3Weerakoon = [alpha3];

totalIterations = 0;

totalError = 0;

T = cputime;

for i = 1:N

fprintf("\nIteration %d:\n", i)

ti = a + i*h;

a1 = wWeerakoon(1);

a2 = wWeerakoon(2);

a3 = wWeerakoon(3);

func = @(w1, w2, w3) [

w1 - a1 - h*(v1 - (v2*w1^2)/(k1+w1^2) + (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v4*w1);

w2 - a2 - h*((v2*w1^2)/(k1+w1^2) - (v3*w1^4*w2^2)/((k2 + w2^2)*(k3 + w1^4)) - v5*w2);

w3 - a3 + h*(d1*w1 + d2*w3);

];

funcDerivative = @(w1, w2, w3) [

1 - h*(((4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 + w1^4) - (4*v3*w1^7*w2^2)*(k2 + w2^2))/((k2 + w2^2)*(k3 +

w1^4))^2 - (2*v2*k1*w1)/(k1^2 + w1^2)^2 + v4), - h*(((2*v3*w1^4*w2)*(k2 + w2^2)*(k3 + w1^4) -

(2*v3*w1^4*w2^3)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

- h*((2*v2*k1*w1)/(k1^2 + w1^2)^2 + ((4*v3*w1^7*w2^2)*(k2 + w2^2) - (4*v3*w1^3*w2^2)*(k2 + w2^2)*(k3 +

w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 1 - h*(((2*v3*w1^4*w2^3)*(k3 + w1^4) - (2*v3*w1^4*w2)*(k2 +

w2^2)*(k3 + w1^4))/((k2 + w2^2)*(k3 + w1^4))^2), 0;

h*d1, 0, 1 + h*d2

];
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w0 = wWeerakoon;

[xWeerakoon, x_nWeerakoon, e_nWeerakoon] = systemWeerakoonNewtonsMethod(func, funcDerivative, w0,

Tolerance, maxK);

wWeerakoon = xWeerakoon;

w1Weerakoon = [w1Weerakoon, wWeerakoon(1)];

w2Weerakoon = [w2Weerakoon, wWeerakoon(2)];

w3Weerakoon = [w3Weerakoon, wWeerakoon(3)];

totalIterations = totalIterations + length(e_nWeerakoon);

totalError = totalError + e_nWeerakoon(length(e_nWeerakoon));

end

fprintf("\nElapsed Time: %.20f\n", cputime - T);

fprintf("\nTotal Iterations: %d\n", totalIterations);

fprintf("\nTotal Error: %.20f\n", totalError);

figure;

plot(t, w1Newtons, ’displayname’, ’w_1(t_i): N2’);

hold on

plot(t, w1Kou, ’displayname’, ’w_1(t_i): K3’);

plot(t, w1Homeier, ’displayname’, ’w_1(t_i): H3’);

plot(t, w1Weerakoon, ’displayname’, ’w_1(t_i): W3’);

hold off

xlabel(’t’);

ylabel(’y’);

legend(’location’, ’best’);

grid on;

figure;

plot(t, w2Newtons, ’displayname’, ’w_2(t_i): N2’);

hold on

plot(t, w2Kou, ’displayname’, ’w_2(t_i): K3’)

plot(t, w2Homeier, ’displayname’, ’w_2(t_i): H3’)

plot(t, w2Weerakoon, ’displayname’, ’w_2(t_i): W3’)

hold off

xlabel(’t’);

ylabel(’y’);

legend(’location’, ’best’);

grid on;

figure;

plot(t, w3Newtons, ’displayname’, ’w_3(t_i): N2’);

hold on

plot(t, w3Kou, ’displayname’, ’w_3(t_i): K3’)

plot(t, w3Homeier, ’displayname’, ’w_3(t_i): H3’)

plot(t, w3Weerakoon, ’displayname’, ’w_3(t_i): W3’)

hold off

xlabel(’t’);

ylabel(’y’);

legend(’location’, ’best’);

grid on;

figure;

plot(t(3001:5001), w1Weerakoon(3001:5001), ’displayname’, ’w_1(t_i): W3’);

hold on

plot(t(3001:5001), w2Weerakoon(3001:5001), ’displayname’, ’w_2(t_i): W3’);

plot(t(3001:5001), w3Weerakoon(3001:5001), ’displayname’, ’w_3(t_i): W3’);

hold off

xlabel(’t’);

ylabel(’y’);

legend(’location’, ’best’);
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grid on;

figure;

plot(w1Weerakoon, w2Weerakoon);

xlabel(’w_1(t_i)’);

ylabel(’w_2t_i)’);

grid on;
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