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Abstract

In this work, we propose a stable finite element approximation by extending higher-order Newton’s method to the multidimen-
sional case for solving nonlinear systems of partial differential equations. This approach relies solely on the evaluation of Jacobian
matrices and residuals, eliminating the need for computing higher-order derivatives. Achieving third and fifth-order convergence,
it ensures stability and allows for significantly larger time steps compared to explicit methods. We thoroughly address accuracy
and convergence, focusing on the singular p-Laplacian problem and the time-dependent lid-driven cavity benchmark. A global-
ized variant incorporating a continuation technique is employed to effectively handle high Reynolds number regimes. Through
two-dimensional and three-dimensional numerical experiments, we demonstrate that the improved cubically convergent variant
outperforms others, leading to substantial computational savings, notably halving the computational cost for the lid-driven cavity
test at large Reynolds numbers.

Keywords: High order Newton type methods, Non-linear problems, Solution convergence, Finite element method,
Incompressible flows

1. Introduction

Nonlinear problems are prevalent across various fields and applications. This work focuses on the numerical so-
lution of highly nonlinear partial differential equation (PDE) systems using enhanced variants of the Newton method.5

Several strategies have been developed to approximate solutions for nonlinear systems, with the classical Newton-
Raphson method being one of the most well-known [1]. This method achieves quadratic convergence under certain
conditions, relying essentially on a continuously differentiable global function and an initial guess that is sufficiently
close to the solution. The Newton method has been widely applied to address highly nonlinear problems, particularly
within finite element [2, 3], finite difference [4, 5, 6, 7, 8, 9] and finite volume [10, 11, 12] frameworks.10

In the literature on nonlinear algebraic root-finding problems f (x) = 0, numerous advanced multistep Newton
modifications have been developed to achieve higher convergence orders, with some methods avoiding the need for
higher-order derivatives. Evaluating second Frchet derivatives is particularly time-consuming, especially for systems
of coupled PDEs. While achieving higher-order convergence is mathematically appealing, the overall computational
cost becomes a crucial factor when solving nonlinear coupled PDEs. The most computationally expensive operations15
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typically involve calculating higher-order derivatives and inverting the associated matrices. In the following, we
reference significant contributions to high-order Newton-like methods that rely solely on first-order derivatives. For
solving PDEs, these methods involve evaluating residuals and inverting Jacobian matrices.

For nonlinear algebraic root-finding problems, Homeier [13], followed by Kou et al. [14], and later Chun [15]
and Li et al. [16], introduced third-order Newton variants. The method in [13] requires two first-order derivative20

evaluations and two function evaluations per iteration, whereas [14] requires only one first-order derivative evaluation
and two function evaluations. In [17], a ”memory” method achieves a convergence order of 1 +

√
2 with just one

function evaluation and one derivative computation per iteration, reusing the same derivative in two consecutive iter-
ations. Improved fourth-order convergence variants have been developed, as shown in [18, 19]. Notably, the methods
from [20] and [21] achieve this with only two function evaluations and one first-derivative evaluation. The presence of25

multiple roots generally reduces the convergence rate of the scheme unless modifications are made to restore it. Behl
et al. [22] developed fourth-order variants for cases where the solution multiplicity is known. Similarly, Zafar et al.
[23] proposed fourth-order methods using a weight function approach to handle multiple roots. Additionally, Sharma
et al. [24] introduced a derivative-free fourth-order iterative method based on the Traub-Steffensen approach, which
was further improved by Ahmad et al. [25] with high-order methods that do not require memory.30

To further enhance convergence, Singh et al. [26] introduced fifth-order, two-step variants requiring two function
evaluations, two Jacobian evaluations, and two matrix inversions per iteration. A fifth-order convergence was also
achieved using homotopy perturbation in [27]. Abdulhassan et al. [28] developed a fifth-order variant by combining
Halley’s method and Taylor expansion with orthogonal Hermite polynomials for efficient second-order derivative
approximation. Sharma et al. [29] generalized the cubically convergent method from [13] to a three-step iterative35

approach with fifth-order convergence, avoiding higher-order derivatives. A sixth-order Newton variant, combining
Taylor series expansion with Halley’s method, is proposed in [30]. In addition, recent higher-order variants are
developed by Grau et al. [31], Cordero et al. [32], Behl et al. [33], Xiao et al. [34], Sharma et al. [35, 36, 37], and
recent high-order schemes by [38, 39, 40, 41, 42, 43, 44], covering cases with both simple and multiple roots. Last but
not least, we refer to the Newton-Krylov methods, which approximate the Jacobian matrices by using approximations40

of the Jacobian-vector products (see, e.g., [45, 46, 47]).
Most of the aforementioned works evaluated the computational efficiency of the methods, commonly using metrics

like Ostrowski’s efficiency index, computed using the convergence order and the computational cost per iteration
[48]. However, their numerical tests typically consider algebraic functions or small ODE systems, often lacking a
comprehensive assessment in the context of coupled nonlinear PDEs. Works on higher-order Newton variants for45

non-linear coupled PDEs are limited. Notable examples include [49], [50], [51], and [26], which applied a fifth-
order method to a 1D reaction-diffusion problem. [52] employed a four-step high-order variant for solving the 1D
Fisher PDE in population dynamics. Additionally, [32] used a high-order variant for a nonlinear 1D heat conduction
equation with finite differences. Quasi-Newton approaches with accelerated convergence were utilized in [34] and [4]
for transport problems within a multiscale hybrid mixed finite element framework. Furthermore, [53, 54, 55] applied50

a cubically convergent variant to 2D two-phase flow problems, while [56] focused on fluid-membrane interactions.
In transient problems, the classical Newton method leads to fully implicit schemes that enhance stability. Our focus

is on reducing computational costscritical for 2D and 3D simulationswhile improving convergence order. To this end,
we aim to generalize certain higher-order weighted-Newton variants to multidimensional cases, relying exclusively
on Jacobian matrix computations and avoiding higher-order derivatives. In this work, we consider the cubic method55

introduced by Homeier et al. [13] and the fifth-order variant developed by Singh et al. [26]. We selected these two-
step Newton variants based on preliminary testing and their straightforward extension to the multidimensional PDE
framework. Homeier’s method requires two Jacobian assemblies and factorizations, along with two linear solves and a
single residual evaluation per iteration. In contrast, Singh’s variant achieves fifth-order convergence with two residual
evaluations and two Jacobian assemblies and factorizations per iteration. For the numerical investigation, we evaluate60

the accuracy and stability of solving the stationary and highly nonlinear p-Laplacian problem, as well as the lid-driven
cavity problem involving time-dependent Navier-Stokes equations across small, mild, and high Reynolds regimes in
both two and three dimensions. Our results demonstrate that implicit strategies, particularly when enhanced with
a globalized BDF2-Newton variant, offer significant computational savings compared to the standard quadratically
convergent Newton methods or linear fixed-point approaches.65

The paper is structured as follows. Section 2 introduces the extension of higher-order iterative variants to the
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multidimensional case. In Section 3, we present the problems used to evaluate the computational efficiency of the
methods, as well as the globalized variant based on a BDF2-Newton continuation algorithm. In Section 4, we conduct
numerical experiments to highlight the main features of the method. Concluding remarks are provided in Section 5.

2. Mathematical setting70

Consider an open, bounded, connected domain Ω ∈ Rd, d > 1, and an unknown u belonging to a suitable Sobolev
space W(Ω). Let W−1(Ω) denote the dual space of W(Ω). The duality pairing between W−1 and W is denoted as 〈., .〉.
We aim to solve the generic nonlinear problem F (u) = 0 with a continuously differentiable functional:

F : W(Ω) −→ W−1(Ω)
u 7−→ F (u).

The residue F (u), in time-dependent problems, represents the system resulting from semi-discretization in time. The
variational formulation 〈F (u), ξ〉 = 0 for all test functions ξ will be discretized within a finite element framework.

2.1. Newton-Raphson method
Let u(0) be the initial guess and set k = 0. For k > 0, the increment δu(k+1) is computed iteratively. Given an

operator DF from W−1(Ω) into W(Ω), let DuF (u)[δu] stands for the Fréchet derivative of F around the point u along
the direction δu ∈ W(Ω). The residue is F

(
u(k)) ∈ W−1(Ω). Newton’s method converts F (u) = 0 into a sequence of

linear sub-problems, which can be compactly expressed as

k > 0 : DuF
(
u(k))[δu(k+1)] = −F (u(k))

u(k+1) = u(k) + δu(k+1).
(2.1)

The stopping criterion can be residual-based and is given by: ||F
(
u(k))|| < max

{
εr ||F (u(0)||, εa

}
, where εr and εa

represent the relative and absolute tolerances, respectively. The iterative process stops if the target level of accuracy75

or the maximum number of iterations is reached. Newton’s iterations can be summarized as follows:
1. Evaluate the residual F

(
u(k));

2. Assemble the Jacobian J (k) = DuF
(
u(k));

3. Solve the Jacobian system J (k)δu(k+1) = −F
(
u(k)) for the update δu(k+1);

4. Update the solution u(k+1) = u(k) + δu(k+1) and increment the iteration counter k ← k + 1;80

5. Test convergence.

The Jacobian matrix must be nonsingular at the solution u∗. Moreover, the local convergence properties require
u(0) to be chosen within a sufficiently close neighborhood of u∗, where F has a unique and simple root. To address
sensitivity to the initial guess, the process can be initialized by performing a few fixed-point iterations or by solving a
coarse nonlinear problem. The analysis of convergence requires conditions such as a Lipschitz continuous derivative85

or assumptions on the degree of non-linearity of F , i.e., concerning the variation of DuF ; we refer, e.g., to [57, 58].
Under these conditions, the method converges superlinearly, often quadratically. Assuming F exhibits sufficient
differentiability near a simple root u∗ and meets the necessary and sufficient conditions for convergence, this method
will be referred to using the acronym ”N2”.

2.2. Newton’s variant with third-order convergence90

We extend the two-step Newton’s variant introduced in [13] to the multidimensional case. This method achieves
cubic convergence while requiring only one residual evaluation and the assembly and factorization of two Jacobian
matrices per iteration. By avoiding second-order derivative evaluations, it maintains a manageable computational cost.
Each iteration involves solving two linear systems, which is straightforward once a Newton solver is in place. Starting
with an initial guess u(0) ∈ W(Ω) at k = 0, the algorithm iterates the following steps until convergence:

k > 0 : DuF
(
u(k))[u(k+1/2) − u(k)

]
= −

1
2
F

(
u(k)),

DuF
(
u(k+1/2))[u(k+1) − u(k)

]
= −F

(
u(k)).

Therefore, the method will be referred to by the acronym ”N3” and is summarized as follows:
3
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1. Calculate the residual F
(
u(k));

2. Assemble the Jacobian J (k) = DuF
(
u(k));

3. Solve for the update δu(k+1/2) the linear system:〈
J (k)δu(k+1/2), ξ

〉
= −

1
2

〈
F

(
u(k)), ξ〉, ∀ξ;

4. Compute an intermediate solution u(k+1/2) = u(k) + δu(k+1/2);
5. Assemble J (k+1/2) = DuF (u(k+1/2));95

6. Solve for the update δu(k+1) the linear system :〈
J (k+1/2)δu(k+1), ξ

〉
= −

〈
F

(
u(k)), ξ〉, ∀ξ;

7. Update the solution u(k+1) = u(k) + δu(k+1);
8. Increment the iteration counter: k ← k + 1;
9. Test the convergence.

We note that computing the Jacobian can be both coding-intensive and computationally expensive. Various ap-
proximation techniques exist in the literature, such as neglecting certain terms or extrapolating from previous nonlinear100

iterations, which lead to quasi-Newton methods, see e.g. [2, 4]. In our case, we can approximate the Jacobian in step
(6) using the one assembled in step (2). While this approach can reduce computational cost, it may degrade the con-
vergence of high-order schemes, potentially leading to failure to converge. This is an important topic but is beyond
the scope of the present work.

2.3. Newton’s variant with fifth-order convergence105

We consider an extension of Newton’s variant recently proposed recently by [37] to the multidimensional case.
This two-step method alternates between a standard Newton step and a second weighted-Newton iteration. Although
it requires only one additional residual evaluation compared to the N3 cubic variant, the method achieves fifth-order
convergence. It involves two residual evaluations, as well as the assembly and factorization of two Jacobian matrices
per iteration, all without requiring evaluations of second-order derivatives. Let u(0) ∈ W(Ω) be an initial solution. For
k > 0, the (k + 1)st iteration is expressed in compact form as:

k > 0 : DuF
(
u(k)) [u(k+1/2) − u(k)

]
= −F

(
u(k)),

DuF
(
u(k+1/2)

) [
u(k+1) − u(k+1/2)

]
= −

1 +
F

(
u(k+1/2)

)T
F

(
u(k+1/2)

)
F

(
u(k))T

F
(
u(k))

F (
u(k+1/2)

)
.

This variant will be denoted by the acronym ”N5”. It defines the sequence u(k) by recurrence for k > 0 as follows:

1. Compute the residual F
(
u(k));

2. Assemble the Jacobian J (k) = DuF
(
u(k));

3. Solve for the update δu(k+1/2) the linear system:〈
J (k)δu(k+1/2), ξ

〉
= −

〈
F

(
u(k)), ξ〉 , ∀ξ;

4. Compute an intermediate solution u(k+1/2) = u(k) + δu(k);
5. Compute the residual F

(
u(k+1/2)

)
;110

6. Assemble the Jacobian J (k+1/2) = DuF (u(k+1/2));
7. Solve the linear system for the update δu(k+1):〈

J (k+1/2)δu(k+1), ξ
〉

= −

〈(
1 +
F

(
u(k+1/2))T

F
(
u(k+1/2))

F
(
u(k))T

F
(
u(k+1/2))

)
F

(
u(k+1/2)), ξ〉 , ∀ξ;

8. Update the solution u(k+1) = u(k+1/2) + δu(k+1);
9. Increment the iteration counter k ← k + 1;

10. Test the convergence.
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3. Nonlinear problems and associated consistent linearization115

3.1. Problem 1: p-Laplacian problem

Let Ω ⊂ Rd be a domain with a Lipschitz continuous boundary. Consider the p-Laplace operator ∆p with 1 < p <
∞. This quasilinear elliptic partial differential operator of second order generalizes the conventional Laplace operator,
recovered for p = 2 [59, 60]. The p-Laplacian problem corresponds to the Euler-Lagrange equation for the functional

I(u) =

∫
Ω

|∇u|pdx.

Consider g ∈ W1,p(Ω) ≡
{
v ∈ W1,p(Ω) : v = g on ∂Ω

}
and f ∈ W−1,p(Ω), where W−1,p(Ω) is the dual space of W1,p(Ω)

so that u − g ∈ W1,p
0 (Ω). Equipped with Dirichlet boundary conditions, the problem consists in finding u such that:

F (u) ≡ −div
(
η
(
|∇u|2

)
∇u

)
− f = 0 in Ω,

u = g on ∂Ω,
(3.1)

where η : ζ ∈ R+ 7−→ ζ(p−2)/2 ∈ R+ and g is regular enough. The linear Poisson problem corresponds to p = 2. The
solutions are called p-harmonic functions, with the equation being singular for p < 2 and degenerate for p > 2 at
critical points where∇u = 0. The well-posedness of (3.1) has been well established in the literature; A comprehensive
analysis can be found in [61, 62]. We proceed with a continuous piecewise finite element approximation. The
variational formulation leads to: find u ∈ W1,p

g (Ω) such that:∫
Ω

η
(
|∇u|2

)
∇u.∇v dx =

∫
Ω

f ψ dx, ∀ψ ∈ W1,p
0 (Ω). (3.2)

Firstly, to assess the performances of Newton’s method or to compute an appropriate initial guess, the fixed-point
algorithm generates a series of linear subproblems where the sequence u(k), k > 0 is computed iteratively as:

• k = 0: u(0) ∈ W1,p
0 (Ω) be given.

• k > 0: u(k) ∈ W1,p
0 (Ω) being known, find u(k+1) ∈ W1,p

0 (Ω) such that:∫
Ω

η
(
|∇u(k)|2

)
∇u(k+1).∇v =

∫
Ω

f ψ, ∀v ∈ W1,p
0 (Ω).

Due to the algorithm’s sensitivity to the initial guess, we set u(0) as the solution to the linear Poisson problem obtained
for p = 2. The convergence criterion is defined with a target accuracy of 10−10, which relies on the evaluation of the
residual F

(
u(k)

)
∈ W−1,p(Ω) with k > 0 as follows:∫

Ω

F
(
u(k)

)
ψ =

∫
Ω

η
(
|∇u(k)|2

)
∇u(k).∇v −

∫
Ω

f ψ, ∀ψ ∈ W1,p
0 (Ω).

Secondly, we provide the tangent problem for the standard Newton’s method. The variational formulation will be
adapted for both enhanced variants as outlined in the aforementioned schemes. The Fréchet derivative of F along the
direction δu writes:

DuF (u)[δu] = −div
(
η
(
|∇u|2

)
∇δu + 2η′

(
|∇u|2

)
(∇u · ∇δu)∇u

)
.

Thus, the weak formulation corresponding to the N2 scheme (2.1) writes:∫
Ω

η
(
|∇u(k)|2

)
∇δu(k+1).∇ψ +

∫
Ω

2η′
(
|∇u(k)|2

) (
∇u(k) · ∇δu(k+1)

)
∇u(k) · ∇ψ = −

∫
Ω

F
(
u(k)

)
ψ, ∀ψ ∈ W1,p

0 (Ω).
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3.2. Problem 2: Lid-driven cavity benchmark with incompressible viscous flow120

Consider the non-dimensionalized Navier-Stokes problem and let Re be the Reynolds number that compares
viscous effects to inertia forces. The shear strain rate tensor is given by D(u) = (∇u + ∇uT )/2. Let T > 0 be
the simulation period. Given initial and boundary conditions, the problem is to find the fluid velocity u = u(t, x) and
the pressure p = p(t, x) such that

Re (∂tu + u.∇u) − div (2 D(u)) + ∇p = 0 in (0,T ) ×Ω, (3.3a)
−div u = 0 in (0,T ) ×Ω, (3.3b)

u = ub on (0,T ) × ΣD, (3.3c)
u(0) = u0 in Ω. (3.3d)

The computational domain is defined as a unit square in 2D and a unit cube in 3D. The flow is driven by the upper
wall, while the remaining walls are held fixed. The flow starts from rest, meaning that u0 = 0. No-slip conditions
are applied to all boundaries, with u = ub on ΣD = ∂Ω. The wall motion induces vorticity, which diffuses within the
cavity, resulting in the driven cavity flow. We introduce the functional spaces:

V(ub) =
{
v ∈

(
H1 (Ω)

)d : v = ub on ΣD

}
and Q = L2

0 (Ω) =

{
q ∈ L2 (Ω) :

∫
Ω

q dx = 0
}
.

For the semi-discretization in time, the time interval [0,T ] is divided into N subintervals [tn, tn+1], with n =125

0, · · · ,N − 1, each having a constant step size ∆t. The unknowns un and pn are computed iteratively at tn for n > 0.
Thus, the resulting fully implicit scheme employs either standard or modified Newton variants. The second-order
backward differentiation scheme, denoted by BDF2, is used for the momentum equation. The scheme is initialized
with the conditions u−1 = u0 = u(0), where u−1 is a convenient notation. For u, v,w ∈

(
H1(Ω)

)d and q ∈ L2(Ω), we
consider the weighted multi-linear forms:130

a(u, v) =

∫
Ω

2 D(u) : D(v), b(u, q) = −

∫
Ω

q div u, c(u, v; w) =

∫
Ω

(
(u · ∇) w + (w · ∇) u

)
· v.

Let χn = (un, pn)T be the vector of unknowns and V = (v, q)T be the corresponding test functions. The global
residual F (χn) of the time-discretized problem writes:〈

F
(
χT

n

)
,VT

〉
≡

(
〈F χ

(
χT

n

)
, v〉V(0)′,V(0), 〈F p(un), q〉Q′,Q,

)T
= 0, ∀V,

where for any n > 0, un−1 and un−2 being known, the residuals are given at each Newton’s iteration k > 0 by:〈
F χ

(
χ(k),T

n

)
, v

〉
V(0)′,V(0)

=
Re
2∆t

m
(
3u(k)

n − 4un−1 + un−2, v
)

+
Re
2

c
(
u(k)

n , v; u(k)
n

)
+ a

(
u(k)

n , v
)

+ b
(
v, p(k)

n

)
,〈

F p

(
u(k)

n

)
, q

〉
Q′,Q

= b
(
u(k)

n , q
)
.

Let n > 0. Upon linearization with respect to χ, the tangent system for N2 is initiated with χ(0)
n = χn−1 at tn and is

given by:
Given χ(k)

n , find the step length δχ(k+1)
n =

(
δu(k+1)

n , δp(k+1)
n

)
∈ V(ub) ×Q such that

3Re
2∆t

m
(
δu(k+1)

n , v
)

+ Re c
(
δu(k+1)

n , v; uk
n

)
+ a

(
δu(k+1)

n , v
)

+ b
(
v, δp(k+1)

n

)
= −

〈
F X

(
X(k),T

n

)
, v

〉
V(0)′,V(0)

,

b
(
δu(k+1)

n , q
)

= −
〈
F p

(
uk

n

)
, q

〉
Q′,Q

,
(3.4)

for all v ∈ V(0) and q ∈ Q. The solution is updated as χ(k+1)
n = χ(k)

n + δχ(k+1)
n . At convergence, we set un = u(∞)

n and
pn = p(∞)

n and proceed to the subsequent time step. In the following, we will omit the subscript n whenever it is clear
from the context.135
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3.3. Continuation strategy for larger Reynolds numbers

Given the sensitivity of the Newton algorithm and its variants to the initial guess and problem nonlinearity, in-
creasing the Reynolds number in test case 2 results in a convergence loss due to a substantial deviation of the initial
guess from the solution. The local convergence limitations of the method restrict the simulation of high Reynolds
regimes, as discussed in 4.2.2. To achieve global convergence for medium and large Reynolds numbers, which re-140

quires an initial solution close to the desired solution, we rely on a continuation approach. The key idea is to proceed
with a smooth initiation of the algorithm at the initial time step. This approach involves starting with a zero Reynolds
number and incrementally increasing it until reaching the target value of Re. This differs from starting at the desired
Re and decreasing the step length while maintaining the original direction of the Newton algorithm. In the subsequent
time steps, the solution obtained in the current time iteration typically serves as a reliable initial guess.145

To enhance the convergence by continuation [63], the original problem is encapsulated within a continuous flow
represented by a differentiable solution path along the Reynolds number. In fact, Re is now treated as a continuous
independent parameter, analogous to the time variable in evolutionary problems. Given a desired value Re, we intro-

Algorithm 1 Globalized Strategy for Efficiently Attaining High Re

1: set the target value Re
2: initialize the continuation parameter ξ0 = 0
3: set the Newton tolerance ε = 10−9

4: m = 0 : initialize with a computed solution χ0 = χ−1 of F (0;χ(0)) = 0
5: m > 0 : let ξm,χm be known
6: while ξm < Re do
7: update ξm+1 = min(Re, ξm + ∆ξ)
8: perform a BDF2 predictor step by solving

〈
DχF (ξm;χm) ·

[
χ̃(0)

m+1 − 4χm + χm−1

]
,V

〉
= −2∆ξ

〈
∂F

∂ξ
(ξm;χm),V

〉
, ∀V ∈ V(0) ×Q

9: initialize Newton residual εk = 2ε
10: perform a correction step by N3 (analogously for N2 and N5):
11: for k = 1, . . . do
12: find the increment δχ̃(k+1/2)

m+1 s.t.

〈
DχF (ξm+1; χ̃(k)

m+1) ·
[
δχ̃(k+1/2)

m+1

]
,V

〉
= −

1
2

〈
F (ξm+1; χ̃(k)

m+1),V
〉
, ∀V ∈ V(0) ×Q

13: compute χ̃(k+1/2)
m+1 = χ̃(k)

m+1 + δχ̃(k+1/2)
m+1

14: find the increment δχ̃(k+1)
m+1 s.t.〈

DχF (ξm+1; χ̃(k+1/2)
m+1 ) ·

[
δχ̃(k+1)

m+1

]
,V

〉
= −

〈
F (ξm+1; χ̃(k)

m+1),V
〉
, ∀V ∈ V(0) ×Q

15: update χ̃(k+1)
m+1 = χ̃(k)

m+1 + δχ̃(k+1)
m+1

16: compute the Newton residual εk+1
17: if εk < ε then
18: set χm+1 = χ̃(k+1)

m+1
19: break
20: end if
21: end for
22: set solution (u?, p?) = χm+1 of F (Re;χ(Re)) = 0
23: end while

7
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duce a continuous independent variable ξ ∈ [0,Re], where ξ = 0 corresponds to Re = 0 and ξ = Re corresponds to the
target value for which we seek a numerical solution. Therefore, the original steady-state or time-discretized problem,
succinctly expressed as F (u, p) = 0 (3.3) with unknowns u?, p?, is reconsidered as a family of problems:

F (ξ;χ(ξ)) = F (ξ; u(ξ), p(ξ)) = 0, (3.5)

parameterized by a real scalar field ξ ∈ [0,Re]. When ξ = 0, a Stokes problem holds with known solution χ(0). For ξ =

Re, the problem involves the unknown solution χ(Re), which corresponds to the desired solution u?, p?. The continu-
ation method determines a pathway from the known solution to the unknown solution. The set

{
χ(ξ) s. t. 0 6 ξ 6 Re

}
can be seen as a curve in V(ub) × Q from χ(0) to χ(Re) parametrized by the continuation parameter ξ. Note that we
can also start from another small value of ξ, which is not necessarily zero but allows for an easily calculated solution.150

We assume that ξ → χ(ξ) and F (ξ;χ(ξ)) are continuously differentiable and that the Jacobian matrix is nonsin-
gular for all χ and ξ. Furthermore, a continuously differentiable solution trajectory χ(ξ) exists, as established in [63,
Theorem 5.2.1], which addressed an inexact version to approximate the Jacobian matrix. We obtain by differentiat-
ing (3.5) with respect to ξ:

DχF (ξ;χ(ξ)) ·
dχ(ξ)

dξ
= −

∂F

∂ξ
(ξ;χ).

Hence, for any values of the parameter Re, we introduce a two-step iterative BDF2-Newton strategy. In the first
step, a prediction is generated using a BDF2 scheme, treating the variable ξ as if it corresponds to a pseudo-time.
The prediction is then followed by a correction step applied using Newton’s method or any high-order variant. For
simplicity, we assume a constant step size ∆ξ. For ease of notation, the subscript m refers only to the continuation
step. The strategy involves finding a sequence of solutions χm ≈ χ(ξm) for a discrete sequence of the continuation155

parameter ξ0 = 0 < ξ1 < · · · < ξM = Re, such that ξm+1 = ξm + ∆ξ. Let < ., . > denote the duality product induced by
the L2 pivot space. The approach is outlined in Algorithm 1, employing the N3 variant, our preferred method, as will
be demonstrated later through the numerical experiments. Note that an adaptive step δξm could also be considered,
but was not addressed in this work; interested readers are referred to, for example, [64].

4. Numerical experiments160

Computations were carried out on the Almesbar High-Performance Computing cluster, which consists of 204 CPU
nodes. Unless specified otherwise, we used 52 computing cores, with each node equipped with 2x Intel Xeon Gold
6230R 26-Core 2.1GHz CPUs (Cascade Lake microarchitecture, Q1 2020). Parallel processing was implemented
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Figure 1: Convergence of the residual for fixed-point iteration as a function of iteration number, presented on a semi-logarithmic scale.
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Figure 2: Convergence of the residual against the iteration number for both fixed-point and N2 methods. (Left) p = 2.8 and (Right) p = 2.995.

via the MPI Message Passing Interface1, with MUMPS utilized for factorization and serving as the direct solver on
distributed-memory systems. Numerical strategies were implemented using Freefem++2 and Rheolef 3. Non-uniform165

meshes were created with Gmsh4. The figures were produced using Paraview5 and Gnuplot6.

4.1. Example 1: Stationary p-Laplacian problem

This test case evaluates the performance of Newton’s variants in comparison to the quadratic standard Newton’s
strategy. It aims to provide insights into the approach to be subsequently employed for solving the time-dependent
Navier-Stokes problem in both 2D and 3D.170

We first solve the p-Laplacian problem using the fixed-point algorithm with p = 2.1, analyzing the convergence
while increasing the nonlinearity level. A structured mesh with a mesh size of h = 2 × 10−2 is used. The evolution
of the residual

∥∥∥F (u(k)
h )

∥∥∥
W−1,p(Ω) with respect to the iteration number k is plotted, where the subscript h refers to the

discretized solution. Results are shown in Fig. 1, displaying the expected linear convergence, which is rapid when
the problem is close to the linear Poisson problem. However, the linear convergence becomes progressively slow to175

achieve as we increase the parameter p. For p = 3, computations result in an oscillatory solution that fails to converge.
This behavior is consistent across different mesh sizes.

We now set p = 2.8 and p = 2.995 and use P1 Lagrange elements with a mesh size h1 = 2.5 × 10−2. Fig. 2 shows
the residual’s convergence with respect to the iteration number. The N2 method outperforms the fixed-point algorithm
as expected, especially for p = 2.995, where N2 converges in 10 iterations, while the fixed-point method requires180

4780 iterations. This improved efficiency is evident in the computational time, with N2 using 0.62 seconds of CPU
time, significantly less than the fixed-point algorithm’s 1 minute and 55.75 seconds.

To assess the convergence with an increasing nonlinearity controlled by p, we calculate the rate of convergence
as:

ROC =

log
 ‖F (u(k)

h )‖W−1,p(Ω)

‖F (u(k−1)
h )‖W−1,p(Ω)


log

 ‖F (u(k−1)
h )‖W−1,p(Ω)

‖F (u(k−2)
h )‖W−1,p(Ω)

 , for k > 2.

1http://www.mpich.org, version 4.2.2, 2024-07-03
2https://packages.debian.org/sid/freefem, version 3.5.8-7, accessed 2024-08-22
3https://packages.debian.org/unstable/rheolef, version 7.2-3, accessed 2024-08-24
4https://gmsh.info/, version 4.13.1, 2024-05-24
5https://www.paraview.org/, version 5.13, 2024-08-09
6http://www.gnuplot.info/, version 6.0.1, 2024-05-10
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p = 2.3 3.0 3.5 4.0 4.5 12.0

k = 2 2.50 0.37 0.13 0.07 0.04 0.01
3 1.98 1.03 1.00 1.00 1.00 11.91
4 2.02 1.13 1.00 1.00 1.00 0.08
5 1.49 1.00 1.00 1.00 1.00
6 1.92 1.00 1.00 1.00 1.00
7 2.00 1.02 1.00 1.00 1.00

11 1.94 1.00 1.00 1.00
12 2.00 1.00 1.00 1.00
20 1.95 1.00 1.00
21 2.00 1.00 1.00
27 1.91 1.00
28 2.00 1.00

2547 1.86
2548 1.99

Table 1: Rates of convergence of the residual relative to the iteration number k for different values of p using the N2 method.

Table 1 shows that achieving higher accuracy with increasing nonlinearity necessitates more iterations. The resid-
ual decreases gradually with increasing p, eventually reaching a threshold beyond which quadratic convergence is
achieved, with ROC clearly approaching 2.185

Hereafter, we assess the efficiency of high-order Newton variants and numerically analyze the convergence by
comparing them with the fixed-point and N2 methods. We consider a mesh size of h = 2.5 × 10−2 and P1 Lagrange
polynomials. Fig. 3 shows the convergence of residuals for p = 2.995, demonstrating rapid and comparable conver-
gence for the Newton variants, while the fixed-point method requires more than 10, 000 iterations.

Given the fixed-point algorithm’s convergence failure for p > 3, we conduct a comparative study among various190

Newton methods for nonlinearity coefficients p = 4 and p = 5.5. The convergence of residuals, shown in Fig. 4,
highlights the superior performance of the N3 and N5 methods. During an initial phase, the residual’s decrease is
slow due to the computed solution being distant from the exact one. The standard Newton method exhibits quadratic
convergence when the approximated solution is within a specific neighborhood. The N3 variant improves convergence
with its higher order, with the N5 variant showing further enhancement. Indeed, the N5 variant converges in 20195

iterations for p = 5.5, while the N2 method requires 42 iterations to achieve the desired accuracy.
To assess the computational cost, we solve the p-Laplacian problem by gradually increasing p. The computational

CPU time is presented in Table 2, with ”NC” indicating cases where the method fails to converge. Due to local con-
vergence properties, we initially performed one fixed-point iteration to initialize the Newton methods. These methods
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∥∥∥F
(
u
(k)
h

)∥∥∥
W−1,p(Ω)

k

100001000100101

1

10−5

10−10

Figure 3: Residual convergence of the fixed-point and Newton’s variants versus the iteration number for p = 2.995. The logarithmic scale is used.

10



4. NUMERICAL EXPERIMENTS

N5

N3

N2

∥∥∥F
(
u
(k)
h

)∥∥∥
W−1,p(Ω)

k

503020101

105

1

10−5

10−10

10−15
N5

N3

N2

∥∥∥F
(
u
(k)
h

)∥∥∥
W−1,p(Ω)

k

503020101

1015

1010

105

1

10−5

10−10

10−15

Figure 4: Convergence of the residuals with respect to iteration number in the logarithmic scale for p = 4 (Left) and p = 5 (Right).

can fail to converge if the initial approximation is significantly far from the solution. The N5 variant demonstrates200

slightly better performance in terms of computing time compared to both the N2 and N3 methods. When the nonlin-
earities are stronger, the additional computational cost associated with the extra Jacobian evaluation in the N5 method
is effectively balanced by its fifth-order convergence. However, the N3 variant fails to converge for p > 6. This issue
will be addressed more effectively in Example 2 using a globalized version. In the following, we will more thoroughly
evaluate the performances of the N3 and N5 variants relative to the N2 method in both 2D and 3D cases for more205

complex problems.

CPU time [seconds]

p Fixed-point method N2 method N3 variant N5 variant

2.998 379.92 0.75 0.78 0.67
4.000 NC 1.35 1.38 1.28
5.000 NC 2.52 2.40 2.33
5.500 NC 3.19 3.14 2.89
7.000 NC 6.15 NC 5.67
8.000 NC 9.29 NC 8.06

Table 2: Comparison of CPU computation times for the p-Laplacian problem for different values of p.

4.2. Example 2: Lid-driven cavity benchmark

In this test case, we examine the time-dependent lid-driven cavity problem, a benchmark for viscous incompress-
ible flow. At lower Reynolds numbers, the resulting fluid flow shows nearly symmetric behavior near the centerline,
forming two vortices in the corners. As Reynolds numbers increase, the nonlinearity in the system becomes more210

prominent. The central vortex begins moving towards the downstream corner before eventually returning to the cen-
ter as the Reynolds number continues to rise. In high Reynolds regimes, multiple secondary and tertiary vortices
emerge, significantly altering the overall flow structure. Several studies have explored 2D flow patterns at lower
Reynolds numbers, serving as a reference for numerical validation. For example, comparisons of streamline topology
in two-dimensional flow are found in [65, 66, 67, 68, 69, 70, 71].215

We first focus on the steady-state solution of a 2D fluid confined within a cavity Ω = (0, 1)2 ∈ R2. A tangential
velocity ub = (1, 0)T is prescribed on the upper boundary of the fluid, while homogeneous Dirichlet conditions are
prescribed on the remaining boundaries. The streamline function and the vorticity field offer insights into the fluid
flow patterns and rotational behavior. The vorticity, denoted by ω, quantifies local fluid rotation and is defined in 2D

11
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Figure 5: Convergence of the N2 method against the time step: (Left) Residual variaton versus the iteration number k for the first time iteration
n = 0, with ∆t1 = 10−2, ∆t2 = 1, ∆t3 = 5, ∆t4 = 16.1, ∆t5 = 16.1084, ∆t6 = 16.1084103, ∆t7 = 16.1084105 and ∆t? = 16.1084104. (Right)
Convergence of the global residual until the steady-state against the time iteration n. The y-semi-logarithmic scale is used.

∆t 0.5 1.0 3.0 5.0 7.0 ∆t?

Ktot 650 329 112 66 40 33
CPU time 123 m 4 s 59 m 44 s 19 m 49 s 13 m 18 s 9 m 3 s 8 m 39 s
−ψmin 0.1100 0.1100 0.1100 0.1100 0.1100 0.1100
−ω 1.9313 1.9313 1.9313 1.9313 1.9313 1.9313
(x, y) (0.53, 0.57) (0.53, 0.57) (0.53, 0.57) (0.53, 0.57) (0.53, 0.57) (0.53, 0.57)

Table 3: Computational time to reach steady-state for Re = 950 with various time steps ∆t. Ktot denotes the total number of iterations using the
standard Newton’s method.

as the curl of the velocity ω = ∇ ∧ u = ∂xv − ∂yu, where u = (u, v). The streamline function, denoted by ψ, is a scalar220

field that describes fluid flow paths and satisfies −∆ψ = ∇ ∧ u in Ω, with ψ = 0 on the boundary ∂Ω.

4.2.1. Assessment of the improved Newton variants
Set h = 2 × 10−2 and Re = 950, and examine the convergence behavior of the N2 method with respect to the

time step ∆t. First, we set ∆t = 10−2 and present the convergence of the residual with respect to Newton’s iteration
number k for the first time step. Convergence is achieved in 3 iterations, and quadratic convergence is observed.
Subsequently, we systematically increase the time step and show the evolution of the residual in Fig. 5. Convergence
is achieved for larger time steps until the residual falls below a certain threshold. Beyond a maximum threshold value
∆t? = 16.1084104 (obtained by dichotomy with 6 × 10−7% precision), the algorithm fails to converge. For time steps
ranging from ∆t = 10−2 to ∆t?, we assess convergence by evaluating

1
2∆t
‖3un − 4un−1 + un−2‖2,Ω ,

which should converge to zero as the steady state is reached. This convergence is illustrated in Fig. 5 (right).
Table 3 shows the total number of Newton iterations for various time steps, along with the total CPU time required

for sequential computation runs. Additionally, we assess convergence for different time steps to the same values of225

minimum streamline ψmin, the position of the primary vortex (x, y), as well as vorticity ω.
Similarly, we perform a numerical study of the convergence for the N5 and N3 variants with respect to ∆t, keeping

the parameters h = 2 × 10−2 and Re = 950. The convergence plots of the residuals are shown in Fig. 6 and Fig. 7 for
12
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Figure 6: Convergence of the N5 Method with respect to the time step: (Left) Variation of residual versus iteration count k for n = 0. (Right)
Convergence of the global residual to steady-state versus time iteration n. The y-axis is shown on a semi-logarithmic scale.
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Figure 7: Convergence of the N3 method with respect to the time step: (Left) Variation of the residual as a function of the iteration count k for
n = 0. (Right) Global residual convergence to steady-state as a function of time iteration n. The y-axis uses a semi-logarithmic scale.

the N5 and N3 variants, respectively. Notably, the maximal threshold value of ∆t achieved with the N5 variant is close
to ∆t? obtained by the standard N2 method. However, the N3 variant demonstrates significantly better efficiency,230

allowing for much larger time steps, reaching up to ∆t ≈ 224.1, as shown in Fig. 7 (right).
We proceed with a convergence study, paying particular attention to the computational cost. Steady-state solutions

have been computed in distributed and parallel runs using 6 processors for various Newton variants. A sequence of
successively refined mesh sizes was employed, and we present the values of the minimum streamline ψmin corre-
sponding to the primary main vortex. The results in Table 4 reveal convergence of ψmin for the three variants. Most235

importantly, the N3 variant shows significant savings in terms of computational cost, achieving approximately a 50%
reduction in CPU time compared to N2 and a 60% reduction compared to N5. In what follows, the N3 variant is our
preferred strategy and will be employed unless specified otherwise.
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N2 N5 N3

1/h Ktot −ψmin CPU Ktot −ψmin CPU Ktot −ψmin CPU

25 34 1.7983 2 m 43 s 34 1.7983 3 m 4 s 19 1.7983 1 m 35 s
50 33 1.9313 1 m 37 s 33 1.9313 1 m 57 s 15 1.9313 0 m 49 s
100 35 2.0028 13 m 11 s 35 2.0028 11 m 3 s 16 2.0028 4 m 37 s
150 35 2.0270 19 m 57 s 33 2.0270 26 m 55 s 15 2.0270 11 m 34 s

Table 4: Comparison of various Newton variants in terms of computational time, total Newton iterations required to reach steady state, and the
minimal stream values characterizing the primary vortex across different mesh sizes.

4.2.2. Strategy by continuation in case of large Reynolds numbers
Consider a mesh size of h = 5 × 10−3. In the case of a transient problem, the solution at a particular time step240

can provide a suitable initial guess for the subsequent time step. However, for large values of Re, this is not generally
fulfilled at the initial time step or when solving the steady-state problem. We solve the steady-state problem for
Re = 500 and gradually increase Re. As a result, the implicit algorithm becomes progressively less well-initialized,
leading to difficulties in achieving convergence, and the algorithm fails to converge when it reaches a threshold value
of Re. The variations in the global residual are shown in Fig. 8, revealing a threshold value around Re? = 852.27162245

within a margin of 10−5 obtained by dichotomy.
We employ the aforementioned continuation strategy to address the local convergence issues arising from insuf-

ficient initialization for large Re, as detailed in Section 3.3 and outlined in Algorithm 1. We choose a significantly
large Reynolds number, Re = 50′000, which surpasses the numerically determined stability threshold value Re?. We
provide in Fig. 9 the convergence of residuals while gradually increasing ξ towards the target value Re. The results250

demonstrate the stability of computations, showing the convergence to the steady-state solution at this high Reynolds
number.

4.2.3. Grid convergence - local and global quantities
We proceed to validate the N3 variant in terms of spatial convergence. Following [67], we search for the steady-

state solution for Re = 1000. We analyze the characteristics of both the primary and secondary vortices: the maximum255

and minimum stream function ψmin and ψmax, as well as the corresponding vorticity ω and position (x, y). Computed
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Figure 8: Residual convergence with respect to the Reynolds number of the N3 variant for the steady-state problem. The logarithmic scale is used.
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Figure 9: Steady-state simulation for Re = 50′000 using h = 5× 10−3 and P2/P1 Lagrange elements for (u, p). (Top) Residual convergence plotted
against the number of iterations on a semi-logarithmic scale in the y-axis. (Bottom) Efficient setting of Re via continuation.

values are reported for successively refined meshes in Table 5, with reference values in the last row obtained by
numerical continuation. A generally satisfactory agreement is observed as h decreases. In the following, we choose
h = 5 × 10−3 unless otherwise specified.

In addition to these local quantities, we also consider some global quantities studied in the literature [67]. We
define the total kinetic energy E , enstrophy Z , and palinstrophy P as follows:

E =
1
2

∫
Ω

‖u‖2 dx, Z =
1
2

∫
Ω

‖ω‖2 dx, P =
1
2

∫
Ω

‖∇ω‖2 dx.

These quantities result in constant values as the solution is stationary. However, achieving spatial convergence for260

enstrophy and palinstrophy is impossible due to the singularity at the corner [72]. Indeed, enstrophy exhibits behavior

Primary vortex Secondary vortex
h −ψmin −ω x y ψmax ω x y

1/25 0.1016 1.7838 0.5400 0.5800 1.1615 × 10−3 0.7903 0.8800 0.1200
1/50 0.1099 1.9198 0.5300 0.5700 1.4276 × 10−3 0.8946 0.8700 0.1100
1/100 0.1144 1.9930 0.5300 0.5650 1.5771 × 10−3 1.0198 0.8650 0.1100
1/200 0.1166 2.0303 0.5325 0.5650 1.6531 × 10−3 1.0760 0.8650 0.1125
1/300 0.1174 2.0428 0.5317 0.5650 1.6785 × 10−3 1.0745 0.8650 0.1117
1/400 0.1178 2.0489 0.5313 0.5650 1.6912 × 10−3 1.0896 0.8650 0.1120
Numerical continuation: 0.1189 2.0676 0.5308 0.5650 1.7290 × 10−3 1.1037 0.8650 0.1129

Table 5: Steady-state flow for Re = 1000. Spatial convergence analysis of the primary and secondary bottom-right vortices, including the minimum
of the stream function, corresponding vorticity ω, and the location x(x, y).
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Method h E Z P

Present 1/25 2.3088 × 10−2 4.7568 6.5512 × 103

Present 1/50 2.2796 × 10−2 4.8246 8.2175 × 103

Present 1/100 2.2769 × 10−2 4.8301 8.6335 × 103

Present 1/200 2.2767 × 10−2 4.8304 8.7155 × 103

Present 1/400 2.2607 × 10−2 4.8304 8.7618 × 103

Numerical continuation −− 2.2767 × 10−2 4.8305 8.7811 × 103

Reference [67] 1/512 2.2767 × 10−2 4.82430 8.2699 × 103

Table 6: Convergence history of global output values for the regularized cavity problem with Re = 1000, alongside a comparison with the finite
differences method using a multigrid solver in [67].

like 1/r near the singular corners, causing enstrophy and palinstrophy to diverge as the mesh size approaches zero.
Therefore, a smooth tangential velocity u(t, (x, y)) =

(
16x2(1 − x)2, 0

)T
is prescribed on the upper boundary of Ω.

The spatial convergence history of the global quantities at the steady state with Re = 1000 is provided in Table 6 for
successively refined meshes, showing that convergence is achieved. The results align with those obtained in [67] with265

fine mesh resolution.

4.2.4. Qualitative validation
We begin by setting Re = 1000 and run simulations until reaching a steady state. The isoline values of the stream

function and vorticity contours, closely resembling those in [67] (including the maximum and minimum values), are

Figure 10: Steady-state solutions for Re = 400, 1000, and 5000, from left to right. Top: Streamfunction (black for ψ > 0, blue for ψ 6 0). Bottom:
Vorticity isocontours (red). [Color figure can be viewed online.]
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Stream-function ψ

1.6 × 10−3 1 × 10−3 6 × 10−4 3 × 10−4 1 × 10−4 3 × 10−5

1 × 10−5 3 × 10−6 1 × 10−6 1 × 10−7 1 × 10−8 1 × 10−9

1 × 10−10 0.0 −1 × 10−10 −1 × 10−9 −1 × 10−8 −1 × 10−7

−1 × 10−6 −3 × 10−6 −1 × 10−5 −3 × 10−5 −1 × 10−4 −3 × 10−4

−1 × 10−3 −3 × 10−3 -0.01 -0.03 -0.05 -0.07
-0.09 -0.1 -0.11 -0.115 -0.1155

Vorticity ω

-40.0 -35.0 -30.0 -25.0 -20.0 -15.0
-10.0 -8.0 -6.0 -4.0 -3.0 -2.0
-1.0 -0.5 -0.2 0.2 0.5 1.0
2.0 3.0 4.0 6.0 8.0 10.0
15.0 20.0 25.0 30.0 35.0 40.0

Table 7: Isoline values for the streamfunction and vorticity contours in the steady-state obtained with Re = 1000, as depicted in Fig. 10.

provided in Table 7. Snapshots are presented in Fig. 10, where the solid black isolines denote positive values, and the270

solid blue isolines represent non-positive values. For higher Reynolds numbers, a few extra isolines will be addeded
near the numerical values of ψmax and ψmin.

Indeed, the steady-state results for Re = 1000 reveal a primary vortex accompanied by two secondary vortices in
the lower corners. The primary vortex has a stream function value of 0.1166, with its center located at coordinates
(0.5325, 0.565), which aligns with the ranges available in existing literature, as shown in Table 8. Therein, the corre-275

Figure 11: Steady-state solutions for Re = 10′000, 20′000, and 50′000, from left to right. Top: Streamfunction (black for ψ > 0, blue for ψ 6 0).
Bottom: Vorticity isocontours (red). [Color figure can be viewed online.]
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Primary vortex
Reference Discretization method 1/h −ψmin −ωP xP yP

Ref. [65] FDM 128 0.1179 2.0497 0.4687 0.5625
Ref. [66] FDM 140 0.1160 2.0260 0.4714 0.5642
Ref. [73] FDM 320 0.1173 − 0.4562 0.5625
Ref. [74] CCM 160 0.1189 2.0677 0.4692 0.5652
Ref. [75] FEM − 0.1100 − 0.5400 0.5730
Ref. [67] FDM 1024 0.1189 2.0674 0.4688 0.5654
Ref. [76] FEM, DG 64 0.1210 − 0.5240 0.5600
Ref. [68] SPH − 0.1143 2.0569 0.5307 0.5646
Ref. [69] FVM, GPU accelerated 601 0.1189 2.0666 0.5308 0.5657
Present FEM 200 0.1166 2.0303 0.5325 0.5650

Secondary vortex
ψmax ωRB xRB yRB

Ref. [65] FDM 128 1.7510 × 10−3 1.1547 0.1406 0.1094
Ref. [66] FDM 140 1.7000 × 10−3 0.9990 0.1357 0.1071
Ref. [73] FDM 320 1.7400 × 10−3 − 0.1375 0.1063
Ref. [74] CCM 160 1.7297 × 10−3 1.1098 0.1360 0.1118
Ref. [67] FDM 1024 1.7292 × 10−3 1.1120 0.1367 0.1123
Ref. [69] FVM, GPU accelerated 601 1.7320 × 10−3 1.1140 0.8636 0.1115
Present FEM 200 1.6531 × 10−3 1.0759 0.8650 0.1125

Table 8: Flow characteristics for Re = 1000, comparing primary and lower-right secondary vortices with reference results from the literature.

sponding discretization techniques are listed as well, using the abbreviations: (FDM) Finite Difference, (FEM) Finite
Element, (FVM) Finite Volume, (SPH) Smoothed Particle Hydrodynamic, (DG) Discontinuous Galerkin, and (CCM)
Chebyshev Collocation methods.

Primary vortex
Reference Discretization method 1/h −ψmin ωP xP yP

Ref. [65] FDM 256 0.1190 1.8602 0.4883 0.5352
Ref. [73] FDM 160 0.0920 − 0.4875 0.5313
Ref. [77] FEM 256 0.1212 − 0.4844 0.5352
Ref. [67] FDM 2048 0.1220 1.9327 0.4854 0.5352
Ref. [76] FEM, DG 64 0.1310 − 0.5150 0.5460
Ref. [69] FVM, GPU accelerated 601 0.1221 1.9381 0.5155 0.5355
Present FEM 200 0.1170 1.8578 0.5150 0.5350

Secondary vortex
ψmax ωRB xRB yRB

Ref. [65] FDM 256 3.0348 × 10−3 2.6635 0.1914 0.0742
Ref. [73] FDM 160 3.1300 × 10−3 − 0.1500 0.0813
Ref. [67] FDM 2048 3.0706 × 10−3 2.7244 0.1943 0.0732
Ref. [69] FVM, GPU accelerated 601 3.0780 × 10−3 2.7504 0.8052 0.0729
Present FEM 200 2.9015 × 10−3 2.6360 0.8050 0.0725

Table 9: Comparison of flow characteristics at Re = 5000 for primary and lower-right secondary vortices, against existing literature results.
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Figure 12: Velocity centerline slices: (Left) Vertical velocity along y = 0.5 (y-component), and (Right) Horizontal velocity along x = 0.5
(x-component). (Top) General view. (Bottom) Zoomed-in views near the points (0.9,−0.25) and (0.5,−0.1), respectively. The color coding
corresponds to different Reynolds numbers (Re). Line plots represent the current calculations, while point plots display reference data from the
literature: GGS [65], BS [67], ASK [69], and BP [74]. [ Colour figure can be viewed online ]

Similarly, Table 9 presents a comparative analysis of the local quantities for the steady flow at a higher Reynolds
number Re = 5000. We include computed values from the literature, demonstrating good agreement.280

Furthermore, we showcase results at high Reynolds numbers, highlighting the stability of the enhanced globalized
N3 strategy up to Re = 50′000. To our knowledge, this Reynolds number has not been examined in the existing
literature with similar numerical approaches. Figures 10 and 11 depict the emergence of additional vortices and
patterns with increasing Re.

Lastly, to provide a qualitative and more accurate comparison of the solution profiles shown in Fig. 10 and Fig.285

11, we analyze steady-state solutions across various Reynolds numbers, from Re = 100 up to Re = 5000. We overlay
the profiles of the vertical and horizontal velocity fields obtained along the horizontal and vertical centerlines through
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Figure 13: Vorticity centerline slices compared with the reference results from the literature: BS [67] and BP [74]. (Left) Vorticity along y = 0.5
(y-component), (Right) Vorticity along x = 0.5 (x-component). (Top) General view, (Bottom) Zoomed-in views. [ Colour figure can be viewed
online ]

the geometrical center of the cavity at y = 0.5 and x = 0.5. These profiles are compared with numerical results
available in the literature. The results from our current simulations are represented using colored lines, with each
color corresponding to the same Re value. Additionally, in Fig. 13, we juxtapose the vorticity profiles along the290

horizontal and vertical centerlines of the cavity with other available results, depicting very good agreement.

4.3. Example 3: Three-dimensional lid-driven cavity

The flows within a cavity inherently exhibit three-dimensional vortical structures, and their complexity is influ-
enced by the Reynolds number, as initially demonstrated in experimental studies [78, 79].

We conduct simulations of cavity flow until a steady state is achieved for various values of Re ranging from 100295

to 2900. The steady-state flow patterns for six Reynolds numbers are illustrated in Figures 14, 15, and 16, showing
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Figure 14: 3D lid driven cavity flow at the Steady-state with Re = 100 (top) and Re = 400. The figure displays the streamfunction (left) and
corresponding isosurfaces (right). [ Colour figure can be viewed online ]

Stream-function ‖ψ‖

1 × 10−4 2.16 × 10−4 6 × 10−4 1 × 10−3 4.65 × 10−3

2.16 × 10−2 5 × 10−2 7.5 × 10−2 1 × 10−1

Table 10: Isosurface values for the streamfunction contours in the steady-state displayed in Fig. 14, Fig. 15 and Fig. 16.

streamlines and corresponding isosurfaces. The isosurface values are provided in Table 10. The flow field profile
shows asymmetry around the vertical centerline and primary vortex. As Re increases, we observe the formation of a
new secondary vortex in the bottom-right corner, followed by a tertiary vortex in the bottom-left corner.

The primary vortex is defined by the peak value of the stream function ‖ψ‖max. This peak is reached at the300

spatial location xP = (xP, yP, zP), which features a stream vector ψP ≡ (ψP,1,ψP,2,ψP,3) and a vorticity vector ωP =

(ωP,1,ωP,2,ωP,3). For future quantitative analysis in relation to our work, we compute the characteristics of the primary
vortices for the previous Re numbers at steady state and present them in Table 11.

Similar to the two-dimensional case, we perform a quantitative analysis of the computational cost comparison
between the N3 strategy and the classical N2 method. Let #K denote the number of mesh tetrahedra and #DOFs the305

total number of degrees of freedom. For two distinct mesh sizes, we set Re = 1000 and execute parallel simulations on
a cluster with 52 CPU cores (2x Intel Xeon Gold 6230R). Table 12 presents the total CPU times for these computations,
demonstrating that the N3 approach is more cost-effective than the N2 method due to its third-order convergence
behavior.
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Figure 15: 3D lid-driven cavity flow at the Steady-state flow with Re = 1000 (top) and Re = 1500. The figure displays the streamfunction (left)
and corresponding isosurfaces (right). [ Colour figure can be viewed online ]

We now focus on the 3D steady-state behavior using successively refined mesh sizes. Specifically, we examine310

key flow characteristics, including the streamline vector ψmax and the corresponding vorticity vector ωP that define

Primary vortex

Re = 100 Re = 400 Re = 1000 Re = 1500 Re = 2000 Re = 2900

‖ψ‖max 1.0035 × 10−1 1.0037 × 10−1 1.0255 × 10−1 1.00376 × 10−1 9.7417 × 10−2 9.3817 × 10−2

ψP,1 −3.7426 × 10−6 1.4174 × 10−5 3.3005 × 10−5 −2.4320 × 10−5 −8.9683 × 10−5 −4.6503 × 10−5

ψP,2 1.0035 × 10−1 1.0373 × 10−1 1.0255 × 10−1 1.0038 × 10−1 9.7417 × 10−2 9.3817 × 10−2

ψP,3 −6.1334 × 10−6 −1.9796 × 10−5 −8.3715 × 10−5 3.2170 × 10−5 5.6839 × 10−5 −2.2647 × 10−4

xP 0.6154 0.5769 0.5385 0.5385 0.5200 0.5200
yP 1 1 0.1026 0.6538 0.6800 0.6800
zP 0.7308 0.6346 0.5769 0.5577 0.5600 0.5600
ωP,1 −8.6724 × 10−3 1.6674 × 10−3 2.6509 × 10−3 2.0500 × 10−3 −3.3695 × 10−3 4.2667 × 10−2

ωP,2 3.0039 2.2579 1.7983 1.6986 1.6205 1.5368
ωP,3 −6.4416 × 10−4 −4.5523 × 10−3 3.7155 × 10−3 2.4529 × 10−3 2.1303 × 10−3 −4.8984 × 10−3

Table 11: Comparison of CPU computation times to reach the steady-state solution for Re = 1000. The computations were performed in parallel
using 52 CPU cores (2x Intel Xeon Gold 6230R).
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Figure 16: 3D lid driven flow at the steady-state with Re = 2000 (top) and Re = 2900. The figure displays the streamfunction (left) and
corresponding isosurfaces (right). The isosurfaces with ‖ψ‖ = 0.093 are also displayed. [ Colour figure can be viewed online ]

#K #DOFs N2 method N3 variant

93′750 415′529 84 min 2.07 s 74 min 48.18 s
48′000 216′024 21 min 28.61 s 18 min 38.23 s

Table 12: Comparison of CPU times to reach the steady-state solution for Re = 1000 using 52 CPU cores (2x Intel Xeon Gold 6230R).

the primary vortex, along with their components once the steady state is achieved. Table 13 presents the computed
values for increasingly refined meshes, demonstrating convergence.

For qualitative comparisons, we also present in Fig. 17 a cross-sectional view through the midpoint plane inter-
secting at coordinates (0.5, 0.5, 0.5) with a normal vector of (0, 1, 0)T . The contour lines illustrate streamlines with315

isovalues of 1.1 × 10−4, 7 × 10−2, and 2.5 × 10−2 (from outermost to innermost). The results exhibit good agreement.
Additionally, we extract surfaces corresponding to specific isovalues of the velocity magnitude: 0.2 in Fig. 17 (Mid-

dle) and 0.25 in Fig. 17 (Right), depicting a qualitative convergence.

5. Concluding remarks

We have presented a stable numerical approach for solving highly non-linear problems, employing enhanced high-320

order Newton variants with third-order and fifth-order convergence. The numerical results of the two-dimensional
and three-dimensional Newtonian flow in a lid-driven cavity highlight the N3 strategy’s superior performance over
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#K : 48′000 93′750 105′456 131′712

#DOFs : 216′024 415′529 466′314 579′968

‖ψ‖max 1.0136 × 10−1 1.0375 × 10−1 1.0414 × 10−1 1.0478 × 10−1

ψP,1 4.2785 × 10−5 2.2472 × 10−5 1.9831 × 10−5 1.6448 × 10−5

ψP,2 1.0136 × 10−1 1.0375 × 10−1 1.0414 × 10−1 1.0478 × 10−1

ψP,3 −1.5139 × 10−5 −1.7729 × 10−5 −1.7438 × 10−5 −1.6593 × 10−5

‖ωP‖ 2.0505 2.1118 2.1230 2.1430
ωP,1 2.8918 × 10−4 1.7645 × 10−3 −2.8886 × 10−4 −1.4086 × 10−3

ωP,2 2.0505 2.2579 2.1230 2.1430
ωP,3 2.5923 × 10−3 −5.9303 × 10−3 1.6952 × 10−3 1.4486 × 10−3

Table 13: Comparison of flow characteristics for the primary vortex in a 3D lid-driven cavity at steady-state across successively refined meshes.

Figure 17: (Left) Cross-sectional view through the midpoint plane: Contour lines representing streamlines with isovalues 1.1× 10−4, 7× 10−2, and
2.5 × 10−2 (from outermost to innermost). Surfaces displaying isovalues of the velocity magnitude: 0.2 (Middle) and 0.25 (Right). Color legend:
Blue (#DOFs: 216′024), Green (#DOFs: 415′529), Black (#DOFs: 466′314) and Red (# DOFs: 579′968). [ Colour figure can be viewed online ]

other approaches, especially in terms of computational cost. It exhibits faster convergence rates and the potential to
significantly improve stability, particularly for larger Reynolds numbers. The introduction of a continuation strategy
has further enhanced stability, allowing us to achieve much higher Reynolds numbers, up to 50′000 in the two-325

dimensional case.
This work is part of an ongoing effort to model highly nonlinear problems in bioengineering. Currently, we are

exploring extensions of the developments in this paper, particularly focusing on multiphysics and fluid-structure in-
teraction problems [2, 80, 81, 82]. We anticipate that the proposed framework could be effectively applied to simulate
the hydrodynamics of biological membranes in confined geometries, which are known for their high nonlinearity and330

severe numerical stability constraints. Additionally, we see potential in applying this framework to model the coupled
macroscopic cardiac mechanics in incompressible flow, where large structural deformations result in stiff problems,
and the fluid dynamics induce high Reynolds regimes during the systole phase. Future work will also focus on de-
veloping suitable preconditioners for three-dimensional simulations, which could significantly reduce computational
effort. Finally, we foresee the applicability of high order schemes for solving nonlinear partial-integro differential335

equations.
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