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Abstract

This project aims to numerically simulate the deformations of red blood cell (RBC) membranes and to
study their stationary shapes. Our approach simplifies the structure of the RBC membrane as a vesicle
membrane due to its similarity to a phospholipid bilayer structure. We adopt the well-known Helfrich
model, in which the behavior of the membrane is described by minimizing a bending energy depending
on the square of the membrane curvature. This results in a highly nonlinear problem, presenting
significant challenges in the field of computational fluid dynamics.

To solve this problem, we propose a relatively simplified modeling approach using tools from differential
geometry. We formulate an optimization problem where the membrane minimizes its bending energy
while preserving a fixed surface area and perimeter constraints. This leads to a saddle point problem,
where two real Lagrange multipliers are introduced to enforce the constraints. We derive the optimality
conditions and solve the resulting initial value problem using various numerical schemes, employing a
shooting method.

Numerical experiments are carried out to evaluate the effectiveness of our approach and we successfully
recover the characteristic biconcave shapes of red blood cells.
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Chapter 1

Introduction

1.1 Motivation

Red blood cells (RBCs) are remarkable cellular entities that play a pivotal role in the circulation and
transport of oxygen and carbon dioxide throughout the human body [1]. Their unique structure and
composition, particularly the phospholipid biomembranes encapsulating these cells, form the foundation
of their functionality and resilience within the dynamic environment of the bloodstream [2].

At the heart of a red blood cell lies its defining feature: the phospholipid bilayer membrane. It is
comprised primarily of phospholipids, proteins, and cholesterol [3, 4]. Phospholipids, featuring hydrophilic
heads and hydrophobic tails, form the basic building blocks of this bilayer, arranging themselves in a
manner that fosters a selective and semi-permeable barrier [1, 5]. This selective permeability regulates
the passage of ions, gases, and other molecules crucial for maintaining the cell’s internal environment [4].

The phospholipid bilayer is not solely composed of phospholipids; integral and peripheral proteins are
interspersed throughout this membrane [4]. Moreover, cholesterol molecules embedded within the
phospholipid bilayer provide stability and fluidity to the red blood cell membrane. They modulate the
packing of phospholipids, influencing the membrane’s flexibility, crucial for the cell’s ability to travel
through the narrowest capillaries while maintaining its structural integrity [6].

Understanding the biology of red blood cells at the level of phospholipid biomembranes and membrane
structure is fundamental not only to explain the mechanisms underlying their physiological functions, but
also to comprehend various pathological conditions associated with membranes [1]. Disorders affecting
these membranes, such as leukemia and sickle cell disease, emphasize the significance of maintaining
the structural integrity of these membranes for the red blood cells’ normal physiological functioning [4].
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Chapter 1 – Introduction

Vesicle membranes, similar to the phospholipid bilayer of red blood cells, represent artificially constructed
lipid bilayers that mimic cellular membranes [1, 7]. These vesicles consist of amphiphilic lipid molecules
arranged in bilayers, resembling the fundamental structure of biological membranes [8]. Vesicle
membranes serve as powerful models for studying the properties and behaviors of natural cell
membranes due to their ability to replicate membrane features, such as selective permeability and
interactions with various molecules, proteins, and drugs [9, 1, 7].

In this research we aim to study vesicle membranes and their shape deformations. We try to mathematically
model a phospholipid vesicle membrane and solve an optimization problem associated with minimizing
its bending energy in order to understand modifications that occur to its structure and predict such
occurrences.

1.2 Outline of The Present Work

The report is structured as follows. In Chapter 2, a literature review is presented. Previous work on
modeling vesicle membranes and methodologies used to minimize the bending energy are discussed.
Chapter 3 provides an overview of preliminary tools and fundamental concepts in differential geometry.
These tools enable the formulation of the membrane problem within the framework of reduced order
modeling. In Chapter 4, the mathematical description of the biological problem is discussed. The shapes
of red blood cells are described through a reduced order model, obtained through a minimization problem
under constraints. A saddle-point formulation is used, leading to the derivation of a simplified model for
red blood cells. Chapter 5 discusses the numerical method set to solve the derived initial value problem.
When the known RBC’s biconcave shapes are obtained, a set of numerical tests is presented to help
validate the model. Lastly, investigations are done on the model parameters and how they affect the
shape obtained.
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Chapter 2

Literature Review

Understanding the behavior of vesicle membranes under elastic bending energy is fundamental in
biophysics and biomolecular engineering. Several studies have focused on explaining the complexities
and numerical methodologies involved in minimizing bending energy within vesicle simulations.

The investigation by [10] delves deeply into the three-dimensional deformation of vesicle membranes
under elastic bending energy. Their utilization of an energetic variational formulation enables an effective
Eulerian description, capturing both static and dynamic deformations. Notably, their numerical
experiments reveal intriguing phenomena with potential applications in real-world scenarios.

Complementary to this, [11] proposes a theory on the elasticity of lipid bilayers, emphasizing curvature as
the primary elasticity governing nonspherical shapes in vesicles. Euler-Lagrange equations derived for
shapes under external factors like magnetic fields and excess outside pressure expand our
understanding of vesicle deformations. Additionally, suggested experimental approaches to determine
elastic properties contribute to practical investigations in this field.

A different numerical methodology is introduced in [12], focusing on the modeling of biomembranes and
capillary interfaces. Through a combination of a level set approach and high-order fully implicit time
integration schemes, this method overcomes stability issues associated with nonlinear forces. Detailed
experiments in two dimensions showcase the accuracy and efficiency of this methodology, highlighting its
superiority over explicit schemes.

Addressing specific challenges in simulating red blood cells or vesicles, [13] presents a tailored numerical
framework. This framework utilizes a penalty method for inextensibility constraints and higher-degree
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Chapter 2 – Literature Review

finite elements for spatial discretization. Notably, it explores the influence of non-Newtonian rheology on
system dynamics, providing insights into the behavior of vesicles in complex fluid environments.

Furthermore, [14] introduces an innovative approach employing shape optimization tools to derive a
mechanical equilibrium equation for vesicle membranes under generalized elastic bending energy. This
novel methodology offers a more concise derivation of the equilibrium equation compared to traditional
tensorial tools, potentially streamlining analytical investigations in this domain.

One notable approach mentioned in the literature is the phase field approach, which has been applied to
model the mechanical properties of RBC membranes [15, 16]. Additionally, the level set approach,
implemented in both finite difference and finite element frameworks, has been utilized to study RBC
deformations under different conditions [17]. Other methodologies such as the boundary integral method,
immersed boundary method, and lattice Boltzmann method have also been employed to investigate the
interaction between RBCs and the surrounding fluid dynamics [18, 19, 20].

However, many of these approaches suffer from limitations, particularly in addressing the coupling
between the fluid and membrane dynamics. Fully explicit decoupling strategies, commonly used in
classical finite element methods, often encounter numerical stability issues, especially when dealing with
large interface deformations [21, 22]. Consequently, there has been a growing interest in developing
implicit or semi-implicit coupling strategies to improve the stability and efficiency of numerical solvers for
RBC modeling. Despite some recent advancements in this direction, such as semi-implicit strategies
using the parametric finite element method [23, 24], challenges remain in achieving robust and efficient
numerical solutions for the dynamics of RBCs in flow.

The collective body of literature showcases diverse methodologies, theoretical frameworks, and numerical
techniques. These studies collectively contribute to advancing our understanding of vesicle deformation,
offering insights crucial for biophysical and biomedical research.
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Chapter 3

Preliminaries on Differential Geometry

3.1 Scalar and Vector Operators

Hereafter, we define some basic operators needed afterwards.

Gradient Operator

The gradient is an operator that represents the rate of change of a scalar or vector field. The gradient of a
once-differentiable real-valued scalar function f(x, y, z) is a vector given by

∇f = (∂xf, ∂yf, ∂zf)
⊤
,

where x, y, z ∈ R. The gradient of vector v = (v1,v2,v3)
⊤ in R3 is given by:

∇v =


∂xv1 ∂yv1 ∂zv1

∂xv2 ∂yv2 ∂zv2

∂xv3 ∂yv3 ∂zv3

 .

Divergence Operator

The divergence of a vector field is a vector operator that measures the rate at which the vectors of the
field emanate from or converge toward a point. The divergence of a vector field v = (v1,v2,v3)

⊤ in R3 is
a scalar field given by:

∇ · v = ∂xv1 + ∂yv2 + ∂zv3,
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Chapter 3 – Preliminaries on Differential Geometry

where x, y, z ∈ R.

Laplace Operator

The Laplace operator represents the second partial derivative of a scalar or vector function. It calculates
the rate of change of that field’s curvature or variation at a particular point, so it is equal to the divergence of
the gradient. The Laplace operator of a twice-differentiable real-valued function f(x, y, z) is a real-valued
function expressed as

∆f = ∇ ·∇f = ∂2x2f + ∂2y2f + ∂2z2f,

where x, y and z represent the standard Cartesian coordinates of R3. The Laplace operator of a vector
v = (v1,v2,v3)

⊤ in R3 is computed by taking the Laplacian of each component. It writes:

∆v = ∇ ·∇v

=
(
∂2x2v1 + ∂2y2v1 + ∂2z2v1, ∂

2
x2v2 + ∂2y2v2 + ∂2z2v2, ∂

2
x2v3 + ∂2y2v3 + ∂2z2v3

)⊤
.

Curl Operator

The curl of a vector field is a vector operator that describes the rotation of a vector. A vector field that
has a zero curl is called irrotational. In 3-dimensional Cartesian coordinates, the curl of a vector field
v = (v1,v2,v3)

⊤ is another vector field given by:

∇× v = (∂yv3 − ∂zv2) i+ (∂zv1 − ∂xv3) j+ (∂xv2 − ∂yv1)k,

where i, j, and k represent the unit vectors in the the x, y and z directions, respectively.

In curvilinear coordinates, we remind of certain known vector-calculus identities associated with the curl
operator, which will be used later on.

• The curl of the gradient of any scalar field always results in the zero vector field; i.e. for any scalar
field f ,

∇× (∇f) = 0.

• The divergence of the curl of any vector field is always equal to zero; i.e. for any vector field v,

∇ · (∇× v) = 0.
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Chapter 3 – Preliminaries on Differential Geometry

3.2 Curves in 2-Dimensional Space (R2)

A curve is a term used to describe the path of a continuously moving point. Such a path is usually
generated by an equation of one dimension. A curve can always be expressed implicitly in terms of two
spatial coordinates x and y in the form:

f(x, y) = 0,

where x, y ∈ R. However, an explicit description for a curve cannot always be found. We write an explicit
equation for a curve if we can isolate one variable and express it in terms of the other, in the form

y = f(x),

where f is here a function of x.

Unit Normal Vector

The unit normal vector to a curve is a unit vector perpendicular to the curve at a given point. The unit
normal vector at x0 on a curve y = f(x) is given by

n =
(∂xf(x0), −1)⊤√
(∂xf(x0))2 + 1

,

where x, y, x0 ∈ R.

Curvature of a Curve

The curvature of a curve is a measure of how much the curve deviates from being a straight line at a
particular point on the curve. It quantifies how quickly the direction of the tangent vector to the curve
changes as you move along the curve. In other words, it describes the rate of change of the curve’s
tangent vector. Let a curve be given by s(t) = (x(t), y(t))

⊤
, then the curvature κ is defined by

κ =

∥∥∥∥dTds
∥∥∥∥ =

∥∥dT
dt

∥∥∥∥ds
dt

∥∥ ,
where T is the unit tangent vector and s is the arc length vector. The unit tangent vector is given by

T(t) =
s′(t)

∥s′(t)∥
.
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Chapter 3 – Preliminaries on Differential Geometry

In two dimensions, the formula is simplified to:

κ =
|x′y′′ − y′x′′|
(x′2 + y′2)3/2

.

3.3 Surfaces in 3-Dimensional Space (R3)

A surface denotes a topological space of dimension two. This means it can be implicitly expressed in
terms of three variables, x, y, z ∈ R, in the form

f(x, y, z) = 0,

where f is a function of x, y, and z. Similarly to curves, surfaces cannot always be expressed explicitly. If
we can solve for z in the implicit equation of a surface, we can express it explicitly in the form

z = f(x, y),

where f is a function of x and y.

Unit Normal Vector

The unit normal vector to a surface is a vector which is perpendicular to the surface at a given point. The
unit normal vector at a point (x0, y0) on a surface z = f(x, y) is given by

n =
(∂xf(x0, y0), ∂yf(x0, y0), −1)⊤√
(∂xf(x0, y0))2 + (∂yf(x0, y0))2 + 1

,

where x, y, z, x0, y0 ∈ R.

Normal Curvature

The normal curvature of a surface at a given point is a measure of how much the surface curves in the
direction of its unit normal vector at that point. It describes the curvature of the surface in the direction
perpendicular to the tangent plane at that point. It is expressed as the dot product of the surface’s unit
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Chapter 3 – Preliminaries on Differential Geometry

normal vector and the derivative of the unit tangent vector with respect to arc length. That is,

κn = n · dT
ds
,

where κn is the normal curvature and n is the unit normal vector to the surface at that point.

We will introduce the principal curvatures, which are two distinct curvatures associated with the normal
curvatures of a surface at a specific point. The first principal curvature, denoted as κ1, corresponds to the
maximum normal curvature of the surface at that point, while the second principal curvature, denoted as
κ2, represents the minimum normal curvature.

Mean Curvature

The mean curvature, H, is a measure of the sum of the principal curvatures of a surface at a particular
point. It is defined by

H = κ1 + κ2.

The mean curvature of a surface denoted by

Σ = {(x, y, z) ∈ R3 : ϕ(x, y, z) = 0}

is given by the divergence of the unit normal vector. Consider

n = (n1, n2, n3)
⊤
.

Hence, the mean curvature writes

H = ∇ · n = ∂xn1 + ∂yn2 + ∂zn3.

We introduce the gradient of n which writes

∇n =


∂xn1 ∂yn1 ∂zn1

∂xn2 ∂yn2 ∂zn2

∂xn3 ∂yn3 ∂zn3

 .

This tensor can be written in the compact form (∇n)ij = ∂jni, with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

Let us now introduce ϕ as a signed distance to the surface Σ and denote it by δ. Accordingly, we can
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Chapter 3 – Preliminaries on Differential Geometry

express
Σ = {x ∈ R3 : δ(x) = 0}.

Here, Ω denotes the interior domain, and Σ corresponds to its boundary, so that Σ = ∂Ω. The signed
distance function is formulated as follows:

δ :


R3 → R

x 7→

miny ∈ Σ |x− y|, if x ∈ R3\Ω

−miny ∈ Σ |x− y|, if x ∈ Ω.

It follows that ||∇δ|| = 1, see e.g. [25]. Therefore, we obtain n =
∇δ

||∇δ||
= ∇δ, and∇n = ∇∇δ.

Now, consider vectors u and v in R3. The cross product of u and v is denoted as u× v, while their dot
product is represented by u · v. Assuming sufficient regularity, the subsequent identity is valid for all
vectors u and v (see for example [26]):

∇(u · v) = (u ·∇)v + (v ·∇)u+ u× (∇× v) + v × (∇× u).

We will set u = v = n. Then,

∇(n · n) = 2(n ·∇)n+ 2n× (∇× n)

∇||n||2 = 2(∇n)n+ 2n× (∇×∇δ).

We know that∇×∇δ = 0 since δ is a scalar function, so the equation becomes

0 = 2(∇n)n

0 = ∇n · n.

The relationship ∇n · n = 0 shows us that ∇n is a matrix with eigenvalue λ = 0 corresponding to an
eigenvector n according to the following relationship between eigenvalues and eigenvectors:
For a square matrix A, if there exists a vector v and a scalar λ such that

Av = λv,

where v is a non-zero vector, then v is an eigenvector of A, and λ is the corresponding eigenvalue.
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Chapter 3 – Preliminaries on Differential Geometry

Let us go back to our case where∇n = ∇∇δ. This means that

∇n = ∇ (∂xδ, ∂yδ, ∂zδ)
⊤
, so ∇n =


∂2x2δ ∂2yxδ ∂2zxδ

∂2xyδ ∂2y2δ ∂2zyδ

∂2xzδ ∂2yzδ ∂2z2δ

 .

We can see that∇n is a real symmetric matrix; i.e. ∂i∂jδ = ∂j∂iδ ∀i, j. This means that∇n = (∇n)⊤.
Hence,∇n has only real eigenvalues and can be diagonalized in the form∇n = QXQ⊤ where QQ⊤ =

QTQ = I, because Q is orthogonal [27]. X is a diagonal matrix with the eigenvalues, Q is a matrix with
the eigenvectors as its columns, and I is the identity matrix.
We know that one of the eigenvalues of∇n, corresponding to eigenvector n, is equal to zero. The two
other eigenvalues are the principal curvatures κ1 and κ2. This means that X and Q can be expressed as
follows:

X =


κ1 0 0

0 κ2 0

0 0 0

 and Q =
(
v1 v2 n

)
.

v1 and v2 are the eigenvectors corresponding to the principal curvatures. We can see that the mean
curvature of the surface is equal to the trace of the gradient of the unit normal vector. That is

H = tr(∇n) = κ1 + κ2.

Example Let us consider the example where Γ is a circle of radius R centered around the origin. That is
Γ = {(x, y) ∈ R2 | ϕ(x, y) =

√
x2 + y2 −R = 0}. The unit normal vector and mean curvature of the curve

would be as follows:
1. n ≡ ∇ϕ

||∇ϕ||
=

(
x√

x2 + y2
,

y√
x2 + y2

)
=
( x
R
,
y

R

)
.

2. H = ∇ · n = ∂x

(
x√

x2 + y2

)
+ ∂y

(
y√

x2 + y2

)
=

1√
x2 + y2

=
1

R
.

We assume that H > 0 for a curve if the curve is convex and H < 0 if it is concave.
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Gaussian Curvature

The Gaussian curvature, denoted as K, also describes the intrinsic curvature of a surface at a specific
point. It is determined by the product of the principal curvatures, κ1 and κ2, defined as follows:

K = κ1κ2

The relationship between the principal curvatures κ, mean curvature H, and Gaussian curvature K is
represented by the equation:

κ2 −Hκ+K = 0.

The Gaussian curvature does not influence the membrane dynamics in the two-dimensional case and will
not be considered for the remainder of this study, see e.g. [12].
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Chapter 4

Mathematical Modeling

4.1 Membrane Energy

For an accurate representation of biomembrane mechanics, we turn to a renowned work based on W.
Helfrich’s model [28] and subsequent studies by Evans [29]. Building on continuum theory, numerous
experiments have been carried out to characterize the mechanical response of lipid membranes, including
the impact of polymers or proteins. A comprehensive overview of the main experimental results and
methodologies used over the past decades is provided in [30].
Let Γ ∈ R2 represent the cell membrane. The bending energy, which is dependent on the mean curvature
of the membrane, can be expressed as:

E =
k

2

∫
Γ

(H −H0)
2
ds,

where k denotes the bending rigidity constant. In this work, we consider k to have a unit value. The
spontaneous curvature H0 is utilized to depict the asymmetry effect of the membrane and its surrounding
environment, and in the two-dimensional scenario, it does not influence the cell’s shape, as explained in
[12]. According to the Helfrich’s model [28], the membrane must minimize its bending energy.

The RBC’s shape is shown to depend on a dimensionless parameter, referred to as the circularity number
χ, see e.g. [31]. It described the ratio between the actual membrane’s area A with the area of a circle
having the same perimeter P as the vesicle. It is expressed as:

χ ≡ A

π ×
(
P

2π

)2 =
4πA

P 2 .
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4.2 Problem Formulation: Minimization Under Constraints

Consider a curve that represents the vesicle’s membrane in R2. It is described in an implicit way as
follows:

Γ = {(x, y) ∈ R2 : ϕ(x, y) = h(x)− y = 0}.

This is known as the level set representation in the field of computational fluid dynamics [32, 33]. We only
consider the part of the curve present in the first quadrant because we assume shape symmetry with
respect to the x-axis and y-axis. That is, we set x ∈ [0, xm], where xm ∈ R+ represents the maximum
stretching in the x direction. We assume h ∈ C7([0, xm]). Due to shape symmetry, we also know that
h′(0) = 0 and h′(xm) = ∞. Therefore, the membrane represents the boundary of the interior domain
denoted by Ω so that Γ = ∂Ω. See Fig. 4.1.

Figure 4.1: Sketch for one-fourth of the curve representing the vesicle’s membrane.

We can express the following geometric quantities and fields:
1. Length L ≡ |Γ| = 4

∫ xm

0

√
1 + (h′(x))2 dx.

2. Area A = 4

∫∫
Ω

dL = 4

∫ xm

0

h(x) dx.

3. The unit normal vector n =
∇ϕ

||∇ϕ||
=

(h′(x), 1)√
(h′(x))2 + 1

.

4. The mean curvatureH = ∇·n = ∂x

(
h′(x)√

(h′(x))2 + 1

)
+∂y

(
1√

(h′(x))2 + 1

)
=

h′′(x)

((h′(x))2 + 1)
3/2

.
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Chapter 4 – Mathematical Modeling

For simplification, we consider a first change of variable h′(x) = w(x), so that h′′(x) = w′(x). Hence,

H =
w′(x)

((w(x))2 + 1)3/2

and the bending energy can be formulated as

E(h) =
1

2

∫
Γ

(H −H0)
2 ds

=
1

2

∫ xm

0

(
h′′(x)

((h′(x))2 + 1)3/2
−H0

)2√
(h′(x))2 + 1 dx

=
1

2

∫ xm

0

(
w′(x)

((w(x))2 + 1)3/2
−H0

)2√
(w(x))2 + 1 dx,

Circular membrane Assume that Γ is a circle of radius R centered around the origin. That is,

Γ = {(x, y) ∈ R2 : ϕ(x, y) =
√
x2 + y2 −R = 0}.

The area of the inner domain and membrane perimeter can be expressed as:
1. L ≡ |Γ| = 4

∫ R

0

√
1 +

(
dy

dx

)2

dx = 4

∫ R

0

√
1 +

(
− x√

R2 − x2

)2

dx

2. A ≡ |Ω| = 4

∫ R

0

√
R2 − x2 dx

4.3 Derivation of The Reduced Order Model

The optimization problem writes:
min
h

1

2

∫
Γ

(H −H0)
2 ds

s.t. L = L0,

A = A0,

where L0 and A0 are the length and area evaluated at the initial time. We refer to the section Appendix:
Optimization with Equality Constraints for additional information regarding the approach to address
equations involving a minimization problem under constraints.
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Chapter 4 – Mathematical Modeling

The Lagrangian function associated with this constrained optimization problem is given by

L(h, λ, p) = 1

2

∫
Γ

(H −H0)
2 ds+ λ(L− L0) + p(A−A0)

=
1

2

∫ xm

0

(
h′′(x)

((h′(x))2 + 1)3/2
−H0

)2√
(h′(x))2 + 1 dx

+ λ

(
4

∫ xm

0

√
(h′(x))2 + 1 dx− L0

)
+ p

(
4

∫ xm

0

h(x) dx−A0

)
=

1

2

∫ xm

0

(
w′(x)

((w(x))2 + 1)3/2
−H0

)2√
(w(x))2 + 1 dx

+ λ

(
4

∫ xm

0

√
(w(x))2 + 1 dx− L0

)
+ p

(
−4
∫ xm

0

xw(x) dx−A0

)
.

To solve the optimization problem, the optimality conditions must be verified. Accordingly, the derivatives
of the Lagrangian functions with respect to w, λ, and p must be equal to 0. To impose that, we will first
introduce the directional derivative.

The directional derivative of a function g(x) in the direction of a function ψ at a point x is a concept from
calculus used in the context of Gateaux derivatives. Let g : Rn → R be a real-valued function of a variable
x and ψ be a function in the same space. The directional derivative of g(x) in the direction of ψ at the
point x is denoted by Dψg(x). It is defined as:

Dψg(x) = lim
t→0

g(x+ tψ)− g(x)
t

.

This derivative measures the rate of change of the function g at the point x in the direction of ψ. It
represents the slope of the function along the direction specified by ψ at the point x.

Let us consider a space of admissible functions w and ψ

V (α, β) =
{
v ∈ C2 ([0, xm]) : v(0) = α; v(xm) = β

}
.

We know that w(0) = 0 and w(xm) =∞. Now let us consider ψ to be a test function. We can define w
and ψ as follows:

w ∈ V (0,∞) and
ψ ∈ V (0, 0) .
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Chapter 4 – Mathematical Modeling

Using the definition of directional derivatives, we find that

Dψ(w
′) = lim

t→0

(w + tψ)′ − w′

t
= ψ′,

Dψ(w
2 + 1) = lim

t→0

(w + tψ)2 + 1− (w2 + 1)

t
= 2wψ, and

Dψ(w) = lim
t→0

w + tψ − w
t

= ψ.

We can now differentiate the directional derivative of L(w, λ, p), with respect to w, in the direction of the
test function ψ, denoted as ∂wL [ψ].

∂wL[ψ] =
1

2

∫ xm

0

[
2

(
w′

(w2 + 1)3/2
−H0

)(
ψ′(w2 + 1)3/2 − 3ww′ψ(w2 + 1)1/2

(w2 + 1)5/2

)
+

(
w′

(w2 + 1)3/2
−H0

)2(
wψ

(w2 + 1)1/2

)]
dx+ 4λ

∫ xm

0

wψ

(w2 + 1)1/2
dx

− 4p

∫ xm

0

xψ dx

∂wL [ψ] =
∫ xm

0

(
w′

(w2 + 1)3/2
−H0

)(
ψ′

w2 + 1

)
dx

−
∫ xm

0

(
w′

(w2 + 1)3/2
−H0

)(
3ww′ψ

(w2 + 1)2

)
dx

+

∫ xm

0

[
1

2

(
w′

(w2 + 1)3/2
−H0

)2

+ 4λ

](
wψ

(w2 + 1)1/2

)
dx− 4p

∫ xm

0

xψ dx.

Let u =

(
w′

(w2 + 1)3/2
−H0

)(
1

w2 + 1

)
and dv = ψ′. Then by integration by parts,

∫ xm

0

(
w′

(w2 + 1)3/2
−H0

)(
ψ′

w2 + 1

)
dx =

[(
w′

(w2 + 1)3/2
−H0

)(
ψ

w2 + 1

)]xm

0

+∫ xm

0

ψ

[
w′′(w2 + 1)3/2 − 3ww′2(w2 + 1)1/2

(w2 + 1)4
− 2ww′

(w2 + 1)2

(
w′

(w2 + 1)3/2
−H0

)]
dx.

We know that [(
w′

(w2 + 1)3/2
−H0

)(
ψ

w2 + 1

)]xm

0

= 0,

so the expression for ∂wL [ψ] becomes

∂wL[ψ] =
∫ xm

0

ψ

[(
2ww′

(w2 + 1)2

)(
w′

(w2 + 1)3/2
−H0

)
−
(
w′′(w2 + 1)3/2 − 3ww′2(w2 + 1)1/2

(w2 + 1)3

)(
1

w2 + 1

)
−
(

w′

(w2 + 1)3/2
−H0

)(
3ww′

(w2 + 1)2

)
+(

1

2

(
w′

(w2 + 1)3/2
−H0

)2

+ 4λ

)(
w

(w2 + 1)1/2

)
− 4px

]
dx.
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Equating ∂wL [ψ] to 0 will lead us to the ordinary differential equation (ODE)
(

2ww′

(w2 + 1)2

)(
w′

(w2 + 1)3/2
−H0

)
−
(
w′′(w2 + 1)3/2 − 3ww′2(w2 + 1)1/2

(w2 + 1)3

)(
1

w2 + 1

)
−
(

w′

(w2 + 1)3/2
−H0

)(
3ww′

(w2 + 1)2

)
+

(
1

2

(
w′

(w2 + 1)3/2
−H0

)2

+ 4λ

)(
w

(w2 + 1)1/2

)
−4px = 0.

This equation simplifies to
w′′

(w2 + 1)5/2
− 5ww′2

2(w2 + 1)7/2
− (H2

0 + 8λ)(w)

2(w2 + 1)1/2
+ 4px = 0. (4.1)

To further simplify the equation, we will use the expression that appears in the third term of the ODE 4.1
to introduce a second change of variables

η =
w

(w2 + 1)1/2
.

It follows that

η′ =
w′

(w2 + 1)3/2
and

η′′ =
w′′

(w2 + 1)3/2
− 3ww′2

(w2 + 1)5/2
.

Note that η corresponds to the first component of the unit normal vector n of the function h(x), and η′
corresponds to divergence of this unit normal vector, or the mean curvature H, of the same function.
We obtain the second term of the ODE 4.1 through the following:

5ww′2

2(w2 + 1)7/2
=

5

2

(
w

(w2 + 1)1/2

)(
w′

(w2 + 1)3/2

)2

5ww′2

2(w2 + 1)7/2
=

5

2
ηη′2.

We then express w in terms of η to find the first term.

η =
w

(w2 + 1)1/2
, so

w =
±η√
1− η2

.

Based on the definition of η, we know that η and w have the same sign, so, we eliminate the negative
expression for w and keep

w =
η√

1− η2
. (4.2)
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The first term of the ODE 4.1 is then given by

η′′ =
w′′

(w2 + 1)3/2
− 3ww′2

(w2 + 1)5/2

w′′

(w2 + 1)3/2
= η′′ +

3ww′2

(w2 + 1)5/2

w′′

(w2 + 1)5/2
=

η′′

w2 + 1
+

3ww′2

(w2 + 1)7/2

w′′

(w2 + 1)5/2
=

η′′(
η√
1−η2

)2

+ 1

+ 3ηη′2

w′′

(w2 + 1)5/2
= η′′

(
1− η2

)
+ 3ηη′2.

Lastly, the ODE 4.1 becomes

η′′
(
1− η2

)
+

1

2
ηη′2 − H2

0 + 8λ

2
η + 4px = 0

or after multiplying by 2,
2η′′

(
1− η2

)
+ ηη′2 −

(
H2

0 + 8λ
)
η + 8px = 0. (4.3)

Given that w(0) = 0 and w′(0) = γ, we find that η(0) = 0 and η′(0) = γ. This gives us the following 2nd
order initial value problem (IVP):

2η′′
(
1− η2

)
+ ηη′2 −

(
H2

0 + 8λ
)
η + 8px = 0, 0 ≤ x ≤ xm, η(0) = 0, η′(0) = γ. (4.4)

We can transform this IVP into a system from the 1st order. First, we solve the ODE 4.3 for η′′. This yields
to

η′′ =
(H2

0 + 8λ)η − ηη′2 − 8px

2(1− η2)
.

Then, we define a new vector ξ ≡ (ξ1, ξ2)
⊤
= (η, η′)

⊤
. It follows that

ξ′ = (η′, η′′)
⊤
=

(
η′,

(H2
0 + 8λ)η − ηη′2 − 8px

2(1− η2)

)⊤

=

(
ξ2,

(H2
0 + 8λ)ξ1 − ξ1ξ22 − 8px

2(1− ξ21)

)⊤

= f (x, ξ) .

Then the IVP 4.4 becomes

ξ′ =

(
ξ2,

(H2
0 + 8λ)ξ1 − ξ1ξ22 − 8px

2(1− ξ21)

)⊤

, 0 ≤ x ≤ xm, ξ(0) = (0, γ)
⊤
. (4.5)

This is a system of two 1st order ODEs that includes parameters H0, λ, p, and γ.
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Numerical Approximation

5.1 Numerical Strategy

Hereafter, we will introduce the numerical methods used for approximating the solutions to the devised
initial value problem. Consider the following compact form of the initial value problem:

ξ′ = f (x, ξ) , 0 ≤ x ≤ xm, ξ(0) = (0, γ)
⊤
,

where
f (x, ξ) =

(
ξ2,

(H2
0 + 8λ)ξ1 − ξ1ξ22 − 8px

2(1− ξ21)

)⊤

.

In the following, we will introduce several numerical methods characterized by distinct convergence
behaviors, each designed to address the initial value problem mentioned earlier. Subsequently, we will
present the overall algorithm detailing the entire implemented numerical strategy.

Euler’s Method

Euler’s Method is a first-order method that uses linear approximation to estimate the solution. The method
involves taking small steps along the slope of the derivative at each point. The algorithm for the method
is as follows:
1. Start with an initial values for the independent variable x and the dependent variable ξ, 0 and ξ(0),
respectively.

2. Choose a step size, ∆x, which determines how far along the x-axis to move in each iteration.
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3. Update the values of ξ and x using the formula:

ξn+1 = ξn +∆xf(xn, ξn)

xn+1 = xn +∆x

4. Repeat steps 3-5 until you reach the desired endpoint.

The error in the Euler method is directly proportional with the step size (∆x). It is a first-order method,
where the error can be expressed inO(∆x), indicating that it diminishes linearly as the step size decreases.
Consequently, greater accuracy in the approximations can be achieved by reducing the step size when
using the Euler method. The error equation is expressed as follows:

|ξ(xn)− ξn| ≤ C ·∆x,

where C is a constant that depends on the maximum value of the derivative of the function f over the
interval 0 ≤ x ≤ xm.

Modified Euler Method (RK2)

The modified Euler method is a second-order numerical method. It improves upon Euler’s method by
taking a more accurate approximation of the slope within each step. Below are the steps to implement
this method:
1. Start with the initial values 0 and ξ(0).
2. Choose a step size ∆x.
3. At each step:

(a) Calculate the slope K1 at the current point:

K1 = f(xn, ξn)

(b) Calculate the slopeK2 at xn+1 using an estimation of the value of ξ at xn+1 equal to ξn+K1∆x:

K2 = f(xn+1, ξn +K1∆x)
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(c) Update ξ using the average of the slopes:

ξn+1 = ξn +
∆x

2
(K1 +K2)

4. Repeat steps 3 for each step until the desired endpoint is reached.
Based on the previous steps,

ξn+1 = ξn +
∆x

2
[f(xn, ξn) + f(xn+1, ξn +∆xf(xn, ξn))] .

The modified Euler method improves upon the Euler method. This improvement results in a smaller error
in the order of O(∆x2). The method exhibits second-order accuracy, meaning that the error decreases
quadratically with the step size. This indicates a higher speed in providing an accurate approximation to
the solution compared to the Euler method. The error equation for the modified Euler method writes as:

|ξ(xn)− ξn| ≤ C ·∆x2,

where C is a constant that depends on the maximum value of the second derivative of the function f over
the interval 0 ≤ x ≤ xm.

Fourth-Order Runge-Kutta Method (RK4)

RK4 is a higher-order numerical method for solving ordinary differential equations. It is one of the most
widely used numerical schemes due to its balance between accuracy and computational efficiency. The
following steps outline the algorithm for this method:
1. Start with the initial values 0 and ξ(0).
2. Choose a step size ∆x.
3. At each step:

(a) Calculate the slope K1 at the current point:

K1 = f(xn, ξn)
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(b) Calculate the slope K2 at xn +
∆x

2
using ξn +

∆x

2
K1:

K2 = f

(
xn +

∆x

2
, ξn +

∆x

2
K1

)

(c) Calculate the slope K3 at xn +
∆x

2
using ξn +

∆x

2
K2:

K3 = f

(
xn +

∆x

2
, ξn +

∆x

2
K2

)

(d) Calculate the slope K4 at xn+1 using ξn +K3∆x:

K4 = f(xn+1, ξn +K3∆x)

(e) Update ξ using the weighted average of the slopes:

ξn+1 = ξn +
∆x

6
(K1 + 2K2 + 2K3 +K4)

4. Repeat steps 3 for each step until the desired endpoint is reached.
The previous steps give us the following evaluation for ξn+1:

ξn+1 = ξn +
∆x

6

[
f(xn, ξn) + 2f

(
xn +

∆x

2
, ξn +

∆x

2
f(xn, ξn)

)
+ 2f

(
xn +

∆x

2
, ξn +

∆x

2
f

(
xn +

∆x

2
, ξn +

∆x

2
f(xn, ξn)

))
+ f

(
xn+1, ξn +∆xf

(
xn +

∆x

2
, ξn +

∆x

2
f

(
xn +

∆x

2
, ξn +

∆x

2
f(xn, ξn)

)))]
.

The RK4 method is a fourth-order numerical method. Its error is typically in the order of O(∆x4), making it
faster than both the Euler and the modified Euler methods in approximating the solution accurately. This
is due to the fact that its error decreases quartically with the step size. Its error equation is:

|ξ(xn)− ξn| ≤ C ·∆x4,

where C is a constant that depends on the maximum value of the fourth derivative of the function f over
the interval 0 ≤ x ≤ xm.
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Error Analysis

Consider an IVP that we can compute the solution for, analytically.

y′ = 1− y2, 0 ≤ x ≤ 50, y(0) =
e− 1

e+ 1
.

The exact solution for this problem writes as:

y =
e2x+1 − 1

e2x+1 + 1
.

To test the orders of the three methods we discussed, we compute the error produced by their
approximations with respect to the exact solution. Plotted in the logarithmic scale, the errors for different
values of N are shown in Fig. 5.1, where N is the number of points in the solution.

Figure 5.1: Plot of errors produced by different numerical methods vs. 1/N in the logarithmic scale.

We observe that the error decreases as we increase the number of points, N , for all methods. However,
they do not all exhibit the same speed. Notice that the RK4 method is the fastest one to converge to an
almost zero error, then the RK2 method, and lastly, the forward Euler method.

The slope of each curve represents the order of convergence for the method. Hence, we compute the
slopes of the curves. The results are displayed in table 5.1.
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Table 5.1: Slopes of error curves produced by different numerical methods
Numerical method SlopeEuler 1.035RK2 2.0859RK4 4.0102

The Shooting Method

The shooting method is a numerical technique used to solve boundary value problems (BVPs). In our
case, we transform the IVP 4.5 into a BVP by considering the value of ξ(xm), where xm is unknown.
Notice that w(xm) =∞, and via 4.2, we know that when ξ21 ≡ η2 = 1, w =∞. By iteratively adjusting a
guessed parameter representing the value of xm, numerical methods are employed to solve the IVP until
the solution satisfies the forementioned condition. Through this process, the shooting method effectively
converges upon a solution for the IVP, allowing for the determination of the value of xm. Here’s a brief
outline of how the shooting method can be used in our context:
1. Start by guessing an initial value for xm.
2. Solve the initial value problem using the guessed xm as the upper limit by the forementioned
numerical techniques.

3. Check if the computed value of ξ(xm) satisfies the desired boundary condition.
4. If the boundary condition is not satisfied, adjust the guessed value of xm and repeat steps 2 and 3
until the boundary condition is met.

5. Once the boundary condition is satisfied, the computed solution ξ(x) over the interval [0, xm] and
the value of xm are considered sufficiently close to the true values.

Numerical Integration

After computing the solution ξ(x), and hence η(x), we can find the values of w(x) using the relationship
4.2. Lastly, knowing that h′(x) = w(x), we will employ the trapezoidal rule to compute the values of h(x).
The trapezoidal rule is a numerical integration technique used to approximate the definite integral of a
function. It approximates the area under a curve by dividing it into trapezoids and summing up their areas.
Its formula writes as:

h(xi+1) = h(xi) +
∆x

2
(w(xi) + w(xi+1)).
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However, since we only know the final value of the desired function (h(xm) = 0), we manipulate the
formula to become:

h(xi) = h(xi+1)−
∆x

2
(w(xi) + w(xi+1)),

and iterate over the interval [0, xm] backwards from the upper bound to the lower bound.

Geometric Quantities

We are particularly interested in the perimeters, areas, and circularity ratios of the shapes produced, so
we compute their values for each solution. The formulas for for the length and area of curve made of
discrete points write as:

Length L =

k−1∑
i=1

√
(xi+1 − xi)2 + (hi+1 − hi)2,

Area A =
1

2

k−1∑
i=1

(xi+1 − xi)(hi + hi+1),

where k is the number of x values.
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Numerical Algorithm

We started by solving the system using the built-in solver on MATLAB, ode45. This solver uses a variable-
step Runge-Kutta method to approximate the solution of ODEs. Algorithm 1 displays the program written
to solve the IVP 4.5, find the values of w, and as a result, the values of h, determine the exact value of
xm, and lastly, compute the geometric quantities associated with the generated shape.

Algorithm 1 Solver for the membrane problem using ODE45 in MATLAB
1: function RBCsolver(γ, H0, p, λ, xm, N )2: Pack initial conditions into a vector: ξ0 ← [0; γ]
3: Define the ODE system: f ← @(x, ξ)[ξ(2); ((H2

0 + 8λ)ξ(1)− ξ(1)ξ(2)2 − 8px)/(2(1− ξ(1)2))]
4: Call ode45 to solve the ODE system:
5: [x_values, ξ_values]← ode45(f, linspace(0, xm, N), ξ0,odeset(′RelTol′, 1e− 13))
6: Stopping criterion:

elements_to_remove← (ξ_values(:, 1))2 ≥ 1
ξ_values(elements_to_remove, :)← [ ]
x_values(elements_to_remove)← [ ]

7: Find the exact value of xm: exact_xm ← x_values(end)
8: Find the values of w:

w_values← zeros(1, length(x_values))
9: for i = 1 : length(x_values) do
10: w_values(i)← ξ_values(i, 1)/√1− ξ_values(i, 1)2
11: end for
12: Find the values of h using trapezoidal rule:

h_values(length(x_values))← 0
i← length(x_values)− 1

13: while (i ≥ 1) do
14: h_values(i)← h_values(i+1)−0.5×(x_values(i+1)−x_values(i))×(w_values(i)+w_values(i+1))

i← i− 1
15: end while
16: Compute the length of the curve: L← 0
17: for i = 1 : length(x_values)− 1 do
18: d←√

(x_values(i+ 1)− x_values(i))2 + (h_values(i+ 1)− h_values(i))2
L← L+ d

19: end for
20: Compute the area under the curve: A← trapz(x_values, h_values)
21: Compute the circularity ratio: R← 4πA/L2

22: return L, A, R, exact_xm, x_values, h_values23: end function

The algorithm will be straightforwardly adjusted to implement the Euler, modified Euler, and fourth-order
Runge-Kutta methods. These adaptations will be made in lines 4 and 5 of the algorithm.
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5.2 Tests and Validation

This section will focus on exploring the various characteristics of the solver, as well as examining the
significance of the model in terms of its biological meaning.

Biconcave Shapes

For the following set of inputs, the plots shown in figure 5.2 were generated.

γ = 0.3, H0 = 0, p = 0.5, λ = 0.125, xm = 1.8

(a) N = 10 (b) N = 10
5

Figure 5.2: Plots of one-fourth of the curve h(x) obtained using different numerical methods and number of points, N .

Because the shape of the membrane is symmetrical, we reflected the values of x and h(x) over the x-axis,
y-axis, and origin to obtain the full shape of the curve. See Fig. 5.3.

(a) N = 10 (b) N = 10
5

Figure 5.3: Plots of the full curve h(x) obtained using different numerical methods and number of points, N .

We observe that the methods produce more precise and smoother plots with a larger number of points
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(see Fig. 5.2). In Fig. 5.3, it appears that the assumption h′(xm) = ∞ is not achieved when N = 10,
which requires us to test the methods with a larger number of points to converge to the solution.

We then multiplied the output length and area by four to compute the perimeter and area of the full shape,
and recalculated the circularity ratio. The output results are shown in table 5.2.

Table 5.2: Special values of the curve obtained using different numerical methods and number of points.
(a) N = 10

ode45 Euler RK2 RK4Exact xm 1.6 1.8 1.6 1.6Perimeter, P 6.9048 7.4969 6.8166 6.904Area, A 1.7559 1.0649 1.5319 1.7542Circularity ratio, χ 0.4628 0.23809 0.41431 0.46247
(b) N = 10

5

ode45 Euler RK2 RK4Exact xm 1.6489 1.6489 1.6489 1.6489Perimeter, P 7.5535 7.5621 7.5544 7.5544Area, A 2.6661 2.6801 2.6676 2.6676Circularity ratio, χ 0.58721 0.58896 0.5874 0.5874

The table shows that when N = 10, methods of higher order like ode45 and RK4 produce precise results
compared to each other. The Euler and RK2 methods on the other hand, generate different geometric
values. For N = 105, RK2 and RK4 methods produce equal values, which are very close to those of
ode45. Euler being the method of the least order, generates slightly different approximations. Additionally,
all four methods approximate the same value of xm.
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Sensitivity to The Spatial Discretization

Next we proceeded to set different values for the number of points, N , when passed as an input to the
Euler, RK2, and RK4 functions, in order to test the convergence of each method.

Figure 5.4: Sensitivity to discretization for all three methods.

Fig. 5.4 shows that the solutions obtained by by RK2 and RK4 methods converge to the exact solution for
all N > 103. The difference between the solutions obtained using different number of points becomes
negligible after N = 103. The Euler method on the other hand, requires N ≥ 105 to approximate the
solution correctly. This becomes clearer when we provide a closer look at the x-intercepts of the plots, as
shown in Fig. 5.5.
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Figure 5.5: Zoomed in version of Fig. 5.4
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Numerical Investigation of Shape Variations with Respect to Model

Parameters

We proceed to study how the shape changes when we change the input parameters γ, λ, and p. The
circularity ratio informs us about the roundness of the shape, so we compute χ for all the different shapes
generated. In Fig. 5.6, we vary the value of γ between −1.5 and 0.5, and keep the values of the other
parameters fixed as follows:

H0 = 0, p = 0.5, λ = 0.125.

We run computations using different parameters of the model and we reconstruct the set of membrane
shapes, which will be dimensionalized and provided with the corresponding circularity parameters.

Figure 5.6: Shapes of the reconstructed membranes, as well as their corresponding circularity ratios (changing the value of γ).

Next, we alter the values of λ in a range between −1 and 1.5, and fix the following values for the rest of
the parameters (see Fig. 5.7).

γ = 0.2, H0 = 0, p = 0.5.
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Figure 5.7: Shapes of the reconstructed membranes, as well as their corresponding circularity ratios (changing the value of λ).

Lastly, we study the variations of the shape with respect to different values of p (see Fig. 5.8), ranging
between 0 and 100, while holding the following values of the rest of the parameters:

γ = −0.3, H0 = 0, λ = −0.2.

Figure 5.8: Shapes of the reconstructed membranes, as well as their corresponding circularity ratios (changing the value of p).

Based on the changes observed in the shape and its circularity ratio for each parameter, we take the
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following values for the input parameters in order to obtain a circularity ratio very close to 1:

γ = −0.7, H0 = 0, p = 0.5, , λ = −0.6.

Fig. 5.9 is produced. We notice that when χ ≈ 1, the shape of the curve becomes very close to full-rounded
circle.

Figure 5.9: Plot of the reconstructed circular membrane with χ ≈ 1.
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Conclusions and Future Work

The current project presents a simple yet accurate reduced-order model for simulating the membrane
deformations of two-dimensional red blood cells. The model is derived through the minimization of a
bending energy function, describing themembranemechanics, and is formulated as an initial value problem
via a saddle point approach. The resulting second-order ordinary differential equation is reformulated into
a system of first-order ODEs, simplified through a change of variables, and numerically solved using Euler,
RK2, and RK4 schemes. A shooting method employed to determine the maximal membrane length. The
known biconcave RBC shapes are found numerically. A set of numerical tests is presented for validation,
and investigations are done to study model parameters.
This work can be extended to consider three-dimensional red blood cell dynamics and incorporate partial
differential equations (PDEs) to capture spatial variations in membrane properties and fluid dynamics.
The model can be applied to study the effect of pathological conditions on red blood cell morphology and
deformability.
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Appendix: Optimization with Equality

Constraints

Optimization Using Lagrange Multipliers

Consider the following optimization problem
min

x ∈ Rn
f(x)

such that gi(x) = 0, 1 ≤ i ≤ m,

where f, gi : Rn → R are convex and continuously differentiable for all 1 ≤ i ≤ m, and m > 0 is an
integer. A common way to solve such a problem is the Lagrange multiplier method. The Lagrange
multiplier method introduces Lagrange multipliers associated with the equality constraints to transform
the constrained optimization problem into an unconstrained problem. The Lagrangian, a function that
combines the objective function and the constraints with the Lagrange multipliers, is defined as follows:

L(x,λ) = f(x) +

m∑
i=1

λi · gi(x),

where λ is a vector in Rm. The components of the vector, λi, are the Lagrange multipliers associated with
the equality constraints and L(x,λ) is the Lagrangian function. The solution to the optimization problem
is then found by setting the gradient of the Lagrangian with respect to the decision variables vector x
and the Lagrange multipliers vector λ equal to zero. This creates optimality conditions that ensure the
objective function is optimized while respecting the equality constraints.
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Example

Let us consider the following problem:

min
x∈R2

f(x) = x21 + x22

s.t.

 g1(x) = x1 + x2 − 1 = 0

g2(x) = x1 − x2 = 0.

In this problem:
• f(x) is the objective function that we want to minimize.
• x = (x1, x2)

⊤ is the vector of decision variables.
• g1(x) and g2(x) represent the two equality constraints.

The Lagrangian function is defined as

L(x,λ) = f(x) + λ1g1(x) + λ2g2(x) = x21 + x22 + λ1(x1 + x2 − 1) + λ2(x1 − x2),

where λ = (λ1, λ2)
⊤. To find the optimal solution, we set the gradient of the Lagrangian with respect to

the variables x1 and x2 and the Lagrange multipliers λ1 and λ2 to zero. We obtain:

∂x1
L = 2x1 + λ1 + λ2 = 0,

∂x2
L = 2x2 + λ1 − λ2 = 0,

∂λ1L = x1 + x2 − 1 = 0,

∂λ2
L = x1 − x2 = 0.

Solving this system of equations, we find that


x1 =
1

2
,

x2 =
1

2
,

λ1 = 1,

λ2 = 0.

So, the optimal solution to the minimization problem is x∗ =

(
1

2
,
1

2

)⊤ with f(x∗) =
1

4
, and λ = (1, 0)

⊤.

39



Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 6th
Edition, Garland Science, 2014.

[2] W. Choi, J. Yi, Y. Kim, Fluctuations of red blood cell membranes: The role of the cytoskeleton, Phys.
Rev. E 92 (2015) 012717. doi:10.1103/PhysRevE.92.012717.

[3] S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces and Membranes, Frontier in Physics
Vol 90, Addison-Wesley Publishing Company, Reading, Massachusetts, 1994.

[4] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell, Molecular Cell Biology,
7th Edition, W. H. Freeman, 2012.

[5] A. Verkleij, R. Zwaal, B. Roelofsen, P. Comfurius, D. Kastelijn, L. van Deenen, The asymmetric
distribution of phospholipids in the human red cell membrane. a combined study using phospholipases
and freeze-etch electron microscopy, Biochimica et Biophysica Acta (BBA) - Biomembranes 323 (2)
(1973) 178–193. doi:https://doi.org/10.1016/0005-2736(73)90143-0.

[6] K. Simons, E. Ikonen, Functional rafts in cell membranes, Nature 387 (6633) (1997) 569–572.
doi:10.1038/42408.

[7] R. Lipowsky, The Conformation of Membranes: Biological Membranes - Structure and Dynamics,
Elsevier Science, 2014.

[8] E. A. Disalvo, M. C. Garcia (Eds.), Liposomes: Methods and Protocols, Vol. 606, Humana Press,
2011.

[9] M.-A. Mader, V. Vitkova, M. Abkarian, A. Viallat, T. Podgorski, Dynamics of viscous vesicles in shear
flow, Eur. Phys. J. E: Soft Matter Biol. Phys. 19 (2006) 389–397. doi:10.1103/PhysRevE.72.
011901.

[10] Q. Du, C. Liu, X. Wang, Simulating the deformation of vesicle membranes under elastic bending
energy in three dimensions, Journal of Computational Physics 212 (2006) 757–777. doi:10.1016/
j.jcp.2005.07.020.

40

https://doi.org/10.1103/PhysRevE.92.012717
https://doi.org/https://doi.org/10.1016/0005-2736(73)90143-0
https://doi.org/10.1038/42408
https://doi.org/10.1103/PhysRevE.72.011901
https://doi.org/10.1103/PhysRevE.72.011901
https://doi.org/10.1016/j.jcp.2005.07.020
https://doi.org/10.1016/j.jcp.2005.07.020


Chapter 5 – Bibliography

[11] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments, Zeitschrift für
Naturforschung C 28 (11-12) (1973) 693–703. doi:10.1515/znc-1973-11-1209.

[12] A. Laadhari, P. Saramito, C. Misbah, G. Székely, Fully implicit methodology for the dynamics of
biomembranes and capillary interfaces by combining the level set and newton methods, Journal of
Computational Physics 343 (2017) 271–299. doi:10.1016/j.jcp.2017.04.019.

[13] A. Laadhari, A. Deeb, B. Kaoui, Hydrodynamics simulation of red blood cells: Employing a penalty
method with double jump composition of lower order time integrator, Mathematical Methods in the
Applied Sciences 46 (18) (2023) 19035–19061. doi:10.1002/mma.9607.

[14] A. Laadhari, C. Misbah, P. Saramito, On the equilibrium equation for a generalized biological
membrane energy by using a shape optimization approach, Physica D: Nonlinear Phenomena
239 (16) (2010) 1567–1572. doi:10.1016/j.physd.2010.04.001.

[15] Q. Du, C. Liu, X. Wang, A phase field approach in the numerical study of the elastic bending energy
for vesicle membranes, Journal of Computational Physics 198 (2) (2004) 450–468. doi:https:
//doi.org/10.1016/j.jcp.2004.01.029.

[16] D. Jamet, C. Misbah, Toward a thermodynamically consistent picture of the phase-field model of
vesicles: Curvature energy, Physical Review E 78 (2008) 031902. doi:10.1103/PhysRevE.78.
031902.

[17] Cottet, Georges-Henri, Maitre, Emmanuel, Milcent, Thomas, Eulerian formulation and level set
models for incompressible fluid-structure interaction, ESAIM: M2AN 42 (3) (2008) 471–492. doi:
10.1051/m2an:2008013.

[18] C. Pozrikidis, Numerical simulation of the flow-induced deformation of red blood cells, Annals of
Biomedical Engineering 31 (10) (2003) 1194–1205. doi:10.1114/1.1617985.

[19] A. Rahimian, S. K. Veerapaneni, G. Biros, Dynamic simulation of locally inextensible vesicles
suspended in an arbitrary two-dimensional domain, a boundary integral method, Journal of
Computational Physics 229 (18) (2010) 6466–6484. doi:https://doi.org/10.1016/j.jcp.
2010.05.006.

[20] B. Kaoui, J. Harting, C. Misbah, Two-dimensional vesicle dynamics under shear flow: Effect of
confinement, Phys. Rev. E 83 (2011) 066319. doi:10.1103/PhysRevE.83.066319.

[21] D. Salac, M. J. Miksis, Reynolds number effects on lipid vesicles, Journal of Fluid Mechanics 711
(2012) 122–146. doi:10.1017/jfm.2012.380.

[22] V. Doyeux, Y. Guyot, V. Chabannes, C. Prud’homme, M. Ismail, Simulation of two-fluid flows
using a finite element/level set method. application to bubbles and vesicle dynamics, Journal of
Computational and Applied Mathematics 246 (2013) 251–259, fifth International Conference on

41

https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1016/j.jcp.2017.04.019
https://doi.org/10.1002/mma.9607
https://doi.org/10.1016/j.physd.2010.04.001
https://doi.org/https://doi.org/10.1016/j.jcp.2004.01.029
https://doi.org/https://doi.org/10.1016/j.jcp.2004.01.029
https://doi.org/10.1103/PhysRevE.78.031902
https://doi.org/10.1103/PhysRevE.78.031902
https://doi.org/10.1051/m2an:2008013
https://doi.org/10.1051/m2an:2008013
https://doi.org/10.1114/1.1617985
https://doi.org/https://doi.org/10.1016/j.jcp.2010.05.006
https://doi.org/https://doi.org/10.1016/j.jcp.2010.05.006
https://doi.org/10.1103/PhysRevE.83.066319
https://doi.org/10.1017/jfm.2012.380


Chapter 5 – Bibliography

Advanced COmputational Methods in ENgineering (ACOMEN 2011). doi:https://doi.org/
10.1016/j.cam.2012.05.004.

[23] J. W. Barrett, H. Garcke, R. Nürnberg, Numerical computations of the dynamics of fluidic membranes
and vesicles, Phys. Rev. E 92 (2015) 052704. doi:10.1103/PhysRevE.92.052704.

[24] Bonito, A., Nochetto, R.H., Pauletti, M.S., Dynamics of biomembranes: Effect of the bulk fluid, Math.
Model. Nat. Phenom. 6 (5) (2011) 25–43. doi:10.1051/mmnp/20116502.

[25] D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, 2nd Edition, Vol. 224
of Classics in Mathematics, Springer, 1983.

[26] M. Spiegel, S. Lipschutz, J. Liu, Schaum’s Outline of Mathematical Handbook of Formulas and
Tables, Fifth Edition, McGraw Hill LLC, 2017.

[27] R. A. Horn, C. R. Johnson, Matrix Analysis, 2nd Edition, Cambridge University Press, 2012.
[28] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z Naturforsch C.

28 (11) (1973) 693–703. doi:10.1515/znc-1973-11-1209.
[29] E. A. Evans, Bending resistance and chemically induced moments in membrane bilayers, Biophys.

J. 14 (12) (1974) 923–931. doi:10.1016/S0006-3495(74)85959-X.
[30] P. Bassereau, B. Sorre, A. Lévy, Bending lipid membranes: Experiments after w. helfrich’s model,

Advances in Colloid and Interface Science 208 (2014) 47–57, special issue in honour of Wolfgang
Helfrich. doi:10.1016/j.cis.2014.02.002.

[31] A. Laadhari, P. Saramito, C. Misbah, Computing the dynamics of biomembranes by combining
conservative level set and adaptive finite element methods, Journal of Computational Physics 263
(2014) 328–352. doi:https://doi.org/10.1016/j.jcp.2013.12.032.

[32] A. Laadhari, An operator splitting strategy for fluid-structure interaction problems with thin elastic
structures in an incompressible Newtonian flow, Applied Mathematics Letters 81 (2018) 35–43.
doi:https://doi.org/10.1016/j.aml.2018.01.001.

[33] A. Laadhari, R. Ruiz-Baier, A. Quarteroni, Fully Eulerian finite element approximation of a fluid-
structure interaction problem in cardiac cells, International Journal for Numerical Methods in
Engineering 96 (11) (2013) 712–738. doi:10.1002/nme.4582.

42

View publication stats

https://doi.org/https://doi.org/10.1016/j.cam.2012.05.004
https://doi.org/https://doi.org/10.1016/j.cam.2012.05.004
https://doi.org/10.1103/PhysRevE.92.052704
https://doi.org/10.1051/mmnp/20116502
https://doi.org/10.1515/znc-1973-11-1209
https://doi.org/10.1016/S0006-3495(74)85959-X
https://doi.org/10.1016/j.cis.2014.02.002
https://doi.org/https://doi.org/10.1016/j.jcp.2013.12.032
https://doi.org/https://doi.org/10.1016/j.aml.2018.01.001
https://doi.org/10.1002/nme.4582
https://www.researchgate.net/publication/381031123

	Abstract
	Introduction
	Motivation
	Outline of The Present Work

	Literature Review
	Preliminaries on Differential Geometry
	Scalar and Vector Operators
	Curves in 2-Dimensional Space )
	Surfaces in 3-Dimensional Space )

	Mathematical Modeling
	Membrane Energy
	Problem Formulation
	Derivation of The Reduced Order Model

	Numerical Approximation
	Numerical Strategy
	Tests and Validation

	Conclusions and Future Work
	Appendix: Optimization with Equality Constraints
	References

