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a b s t r a c t

In this letter, we present a computational framework based on the use of the Newton
and level set methods and tailored for the modeling of bubbles with surface tension
in a surrounding Newtonian fluid. We describe a fully implicit and monolithic finite
element method that maintains stability for significantly larger time steps compared
to the usual explicit method and features substantial computational savings. A
suitable transformation avoids the introduction of an additional mixed variable in
the variational problem. An exact tangent problem is derived and the nonlinear
problem is solved by a quadratically convergent Newton method. In addition, we
consider a generalization to the multidimensional case of the Kou’s and McDougall’s
methods, resulting in a faster convergence. The method is benchmarked against
known results with the aim of illustrating its accuracy and robustness.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of the dynamics of bubbles and multiphase flows with surface tension in a surrounding
Newtonian flow has been the subject of several numerical investigations. The surface tension effect has a
considerable importance in many real life phenomena and industrial applications, such as the bubbly wake of
ships, air entrainment in oceans and gas–liquid flow in nuclear power plants. Several numerical methodologies
have been developed using, for instance, the immersed boundary method [1], level set method [2], and
Volume-of-Fluid method [3]. Most of the contributions have used fully explicit strategies and result in a
severe stability constraint for the temporal resolution [4].

In this work a fully implicit and monolithic method based on the use of the Newton method is presented.
Recently, a multitude of Newton variants have been derived, featuring faster convergence compared to
the standard method without requiring higher order derivatives [5–7]. To our knowledge, such appealing
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Fig. 1. A sketch for the interface and its surrounding domain.

methods have not been sufficiently investigated for such problems. We consider a generalization to the
multidimensional case of the McDougall’s [7] and Kou’s [5] methods, and we show that the implicit solver
allows substantial computational savings compared to the explicit approach. This framework is part of a
larger, ongoing work to model red blood cells in microvasculature.

2. Mathematical formulation

Let T > 0 represent the period of the simulation. For any time t ∈ (0, T ), let Ωi(t) ⊂ Rd with d = 2, 3
represent the interior domain having a Lipschitz continuous boundary Γ (t) = ∂Ωi(t). The interface Γ (t)
and its surrounding fluid Ωo(t) are embedded in a larger computational domain Λ such that Γ (t) ∩ ∂Λ = ∅,
∀t ∈ (0, T ), see Fig. 1. We denote by n and ν the outward unit normal vectors on Γ (t) and ∂Λ, respectively.
Let H be the total curvature on Γ (t). Let the symbols ⊗ and : denote the tensorial product and the two times
contracted product between tensors, respectively. The interface projector is expressed by πΓ ≡ Id − n ⊗ n,
where Id is the identity tensor. For any scalar field ψ and vector field v, we introduce the surface gradient
∇sψ = πΓ ∇ψ and the surface divergence divsv = tr(∇sv) = πΓ : ∇v.

From now, the explicit dependence of Ωi, Ωo and Γ from t will be understood.

2.1. Level set method

For any time t ∈ (0, T ), we follow implicitly the motion of Γ using the level set method. The interface
is described as the iso-surface zero of a level set function φ in such a way that Γ (t) =

{
(t,x) ∈

(0, T ) × Λ : φ(t,x) = 0
}

. Let u ≡ ∂tx be the fluid velocity. The dynamics of Γ is described by a time-
dependent partial differential equation (2.3). This problem is initialized with a signed distance function
ϕ0 to Γ (0) and is equipped with a suitable boundary condition φ = φb on the upstream boundary
Σ− =

{
x ∈ ∂Λ : u · ν(x) < 0

}
. All geometrical quantities are extended to Λ and are easily recovered

implicitly in terms of φ, e.g. n = ∇φ
|∇φ| and H = divsn. Let ε be a regularization parameter proportional to

the mesh size, referred to as h. In practice, we usually set ε = 2.5h. The Dirac measure δΓ and the Heaviside
function H are regularized in a banded strip of width 2ε around Γ using the following expressions:

δε(φ) =

⎧⎨⎩
1
2ε

(
φ+ cos

(πφ
ε

))
, when |φ| ⩽ ε,

0, otherwise
and

Hε(φ) =

⎧⎪⎪⎨⎪⎪⎩
0, when φ < −ε
1
2

(
1 + φ

ε
+ 1
π

sin
(πφ
ε

))
, when |φ| ⩽ ε,

1, otherwise.
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For any function ψ(·) defined on Γ , let ψ̃(·) stand for an extension to the entire domain Λ in such a way
that it is constant in the normal direction to the interface. Integrals over Γ are approximated by:∫

Γ

ψ(x) ds =
∫
Λ

|∇φ| δΓ ψ̃(x) dx ≈
∫
Λ

|∇φ| δε (φ) ψ̃(x) dx.

The transport of φ (2.3) degenerates the signed distance property and can deteriorate the computational
accuracy on Γ . To reestablish the signed distance property, we solve a redistancing problem following the
approach described in [8].

2.2. Statement of the nonlinear coupled problem

We consider the instationary Navier–Stokes equations and we assume piecewise constant density ρi/o

and viscosity µi/o, see Fig. 1. In an Eulerian framework, a continuous description of the global density
and viscosity is performed: ρε(φ) = ρi + (ρo − ρi)Hε(φ) and µε(φ) = µi + (µo − µi)Hε(φ). Let D(u) =
(∇u +∇uT )/2 and σ(u, p, φ) = 2µ(φ)D(u)−pId be the strain and fluid Cauchy stress tensors, respectively.
Let [.]+− design the discontinuity across Γ and γ be the surface tension coefficient. The interface movement
is dictated by the interplay between the hydrodynamic forces and the capillary force. The discontinuity of
the normal stresses is calibrated by the interface force, whereas the interface and fluid move with the same
velocity. The system is subject to an external body force g.

We consider the non-dimensionalized problem and we introduce the density and viscosity ratios ρ⋆ = ρi/ρo

and µ⋆ = µi/µo. The characteristic scales of length and time are D and L/
√
D|g|, respectively, where D

and L are the diameter of Γ (0) and the size of Λ. The Reynolds and capillary numbers are defined by
Re = ρoUgD/µo and Ca = µo

√
D|g|/γ, respectively. From now, all quantities and domains are non-

dimensionalized, while we use the same notations for ease of exposition. Equipped with suitable initial and
boundary conditions, the coupled nonlinear problem describing the dynamics of the interface with surface
tension reads:

(P) find u, p and φ such that

Reρε(φ)
(
∂tu + u.∇u

)
− div

(
2µε(φ)D(u)

)
+ ∇p = Reρε(φ)g in (0, T ) × Λ, (2.1)

div u = 0 in (0, T ) × Λ, (2.2)

∂tφ+ u · ∇φ = 0 in (0, T ) × Λ, (2.3)

[u]+− = 0 and [σn]+− = 1
Ca

Hn on (0, T ) × Γ . (2.4)

3. Finite element approximation and solution method

3.1. Semi-discretization in time

Let us divide [0, T ] into N subintervals [tn, tn+1], n = 0, . . . , N − 1 of constant time steps ∆t. For any
n > 0, the unknowns un, pn and φn approximate u, p and φ at time tn, respectively. Similarly, πΓ is
approximated by πΓ ,n = Id − nn ⊗ nn at tn. Let ΣD be the set on which essential boundary conditions for
u are set. At the numerical level, the curvature usually represents a difficult term that should be accurately
computed. To decrease the derivation order with respect to φ and avoid the introduction of a mixed variable,
we use the following key transformation suitable for surface integrals:∫

Γ

H n · w =
∫
Γ

w · ∇s1 +
∫
Γ

divsw −
∫

∂Γ=∅
ν∂Γ · w =

∫
Γ

πΓ : ∇w,
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where ν∂Γ represents the co-normal vector that is normal to ∂Γ and tangent to Γ , and w represents a
generic vector. We introduce the functional spaces:

V(ub) =
{

v ∈
(
H1 (Λ)

)d : v = ub on ΣD

}
, Q =

{
q ∈ L2 (Λ) :

∫
Λ

q = 0
}

and

X(φb) =
{
ψ ∈ L2 (Λ) ∩W 1,∞ (Λ) : ψ = φb on Σ−

}
.

For the time approximation, we use the backward differentiation scheme of second order for the time
derivative terms. The scheme is bootstrapped by the initial conditions u−1 = u0 = u(0) and φ−1 =
φ0 = ϕ0(0), where u−1 and φ−1 only represent suitable notations. Let χn ≡ (un, pn, φn) be the global
vector of unknowns. After regularization and semi-discretization in time, the problem P consists in finding
χn ∈ V(ub) × Q × X(φn−1) such that

Re

∫
Λ

ρε(φn)
(

3un − 4un−1 + un−2

2∆t + un.∇un

)
· v +

∫
Λ

2µε(φn) D (un) : D(v) −
∫
Λ

pndiv v

− 1
Ca

∫
Λ

δε(φn)
⏐⏐∇φn

⏐⏐ πΓ ,n : ∇v −Re

∫
Λ

ρε (φn) g · v = 0, ∀v ∈ V(0), (3.1)∫
Λ

q div un = 0, ∀q ∈ Q, (3.2)∫
Λ

3φn − 4φn−1 + φn−2

2∆t ψ +
∫
Λ

(
un · ∇φn

)
ψ = 0. ∀ψ ∈ X (0) . (3.3)

3.2. Exact tangent problem and Newton–Raphson method

Let R (χ) be the global residual corresponding to (3.1)–(3.3) and ⟨., .⟩ stand for the duality product. Let
DR(χ)[δχ] denote the Gâteaux derivative of R at χ along the direction δχ. The standard Newton method
reduces the nonlinear problem R (χ) = 0 into a sequence of linear sub-problems. Let δχk

n ≡
(
δuk

n, δp
k
n, δφ

k
n

)
be the increment. We iteratively compute χk

n at tn by a nonlinear Richardson method in such a way that,
for any sub-iteration k ⩾ 0, the solution explicitly expresses as χk+1

n = χk
n + δχk

n with DR
(
χk

n

) [
δχk

n

]
=

−R
(
χk

n

)
. A second order extrapolation enables to assign the starting values, and the stopping criterion

is based on the residual computation. The Newton tolerance is ϵtot = 10−8. In what follows, we drop the
superscript n whenever it is clear from the context.

In addition, we consider a generalization to the multidimensional case of the McDougall’s method [7]
and Kou’s method [5]. The McDougall’s method is a modification of the standard Newton method with a
convergence of order 1+

√
2 at a cost of one residual evaluation and one Jacobian assembly and factorization

per iteration. That results in an efficiency index (convergence order per function or derivative evaluation)
of (1 +

√
2)1/2. This method with memory re-uses the same Jacobian matrix in the next step and requires

the resolution of two linear systems per iteration. The Kou’s method requires two residual evaluations and
one assembly and factorization of the Jacobian per iteration. The method is cubically convergent with an
efficiency index of 3√3.

Kou’s method [5]:

k ≥ 0 : DR
(
χk
) [

χk+0.5 − χk
]

= R
(
χk
)
,

DR
(
χk
) [

χk+1 − χk+0.5] = −R
(
χk+0.5) .

McDougall’s method [7]:
k = 0 : χ0

⋆ = χ0 and DR
(
χ0) [χ1 − χ0] = −R

(
χ0)

k ≥ 1 : DR
(

χk−1+χk−1
⋆

2

) [
χk

⋆ − χk
]

= −R
(
χk
)
,

DR
(

χk+χk
⋆

2

) [
χk+1

⋆ − χk
]

= −R
(
χk
)
.

Thereafter, we proceed with the derivation of the exact tangent problem in the case of the standard Newton
method. We first provide some useful directional derivatives in the direction of a level set increment δφ:
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Dµε(φ)[δφ] = (1 − µ⋆)δε(φ)δφ, D
1

|∇φ|
[δφ] = −∇δφ · ∇φ

|∇φ|3
,

Dn[δφ] = ∇δφ

|∇φ|
− (∇φ · ∇δφ)∇φ

|∇φ|3
= πΓ∇δφ

|∇φ|
= ∇sδφ

|∇φ|
,

DπΓ [δφ] = −1
|∇φ|2

(
∇sδφ⊗ ∇φ+ ∇φ⊗ ∇sδφ

)
and D divsv[δφ] = DπΓ [δφ] : ∇v.

To write the problem in a compact manner suitable for a straightforward finite element implementation, we
introduce the weighted multi-linear forms defined for all q ∈ L2(Λ); w ∈ L∞(Λ); φ,ψ ∈ X; u, v,w ∈ V and
τ ∈ (L∞(Λ))d×d:

a(u, v;w) =
∫
Λ

2wD(u) : D(v); b(u, q; τ ) = −
∫
Λ

q τ : ∇u;

c(u, v;w,w) =
∫
Λ

w
(
(u · ∇) w + (w · ∇) u

)
.v;

e(φ,ψ) =
∫
Λ

φψ; h(φ, v;w,w) =
∫
Λ

2φwD(v) : D(w); k(φ, v; w, τ ) =
∫
Λ

w · ∇φ (τ : ∇v);

i(φ,ψ; w) =
∫
Λ

ψw · ∇φ;

g(φ, v; w) =
∫
Λ

φv · w; m(u, v;w) =
∫
Λ

w u · v;

l (φ, v; w, τ ) =
∫
Λ

(
(τ · ∇φ) ⊗ w + w ⊗ (τ · ∇φ)

)
: ∇v.

The exact tangent system associated to P(tn) (3.1)–(3.3) reads: given χk, find δχk ∈ V(ub) ×Q×X(φn−1)
such that
3Re
2∆t m

(
δuk, v; ρε(φk)

)
+Re c

(
δuk, v; ρε(φk),uk

)
+ a

(
δuk, v;µε

(
φk
))

+ b

(
v, δpk; Id

)
+ (1 − µ⋆)h

(
δφk, v; δε

(
φk
)
,uk

)
+ Re (1 − ρ⋆) g

(
δφk, v; δε

(
φk
)(3uk − 4un−1 + un−2

2∆t + uk · ∇uk − g
))

+ 1
Ca

l

(
δφk, v; δε

(
φk
) ∇φk⏐⏐∇φk

⏐⏐ ,πk
Γ

)

− 1
Ca

k

(
δφk, v; δε

(
φk
) ∇φk⏐⏐∇φk

⏐⏐ ,πk
Γ

)
+ 1
Ca

b

(
v, δφk; δ′

ε

(
φk
) ⏐⏐∇φk

⏐⏐πk
Γ

)
= −

⟨
Rχ

(
χk
)
, v
⟩
V(0)′,V(0)

,

b
(
δuk, q; Id

)
= −

⟨
Rp

(
uk
)
, q
⟩
Q′,Q

,

3
2∆te

(
δφk, ψ

)
+ i
(
δφk, ψ; uk

)
+ g
(
ψ, δuk; ∇φk

)
= −

⟨
Rφ

(
φk,uk

)
, ψ
⟩
X(0)′,X(0)

,

for all v ∈ V(0), q ∈ Q and ψ ∈ X(0), where the corresponding residuals are expressed by:⟨
Rχ

(
χk
)
, v
⟩
V(0)′,V(0)

= Re

2∆t m
(

3uk − 4un−1 + un−2, v; ρε

(
φk
))

+ Re

2 c

(
uk, v; ρε

(
φk
)
,uk

)
+ 1
Ca

b

(
v, δε

(
φk
)

;
⏐⏐∇φk

⏐⏐πk
Γ

)
+ a

(
uk, v;µε

(
φk
))

+ b

(
v, pk; Id

)
−Rem

(
g, v; ρε

(
φk
))
,⟨

Rp

(
uk
)
, q
⟩
Q′,Q

= b

(
uk, q; Id

)
and⟨

Rφ

(
φk,uk

)
, ψ
⟩
X(0)′,X(0)

= 1
2∆te

(
3φk − 4φn−1 + φn−2, ψ

)
+ i

(
φk, ψ; uk

)
.
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Table 1
Convergence curves of the residuals and the corresponding orders of convergence, obtained with h = 1/30 and ∆tCFL ≈ 0.011503407.

Table 2
(Left) Computation time CPU on one processor for the implicit methods for several values of ∆t. (middle) Comparison of the total
simulation time with respect to the fully explicit method. (Right) Maximum time step size against the time step limit from the stability
criterion.

4. Sample numerical result

This framework has been implemented using the Rheolef environment for scientific computing [9].
Parallelism relies on MPI, while MUMPS is used for the factorization and as direct solver on distributed-
memory architectures.

To validate our computational framework, we consider the rising bubble benchmark [2]. Consider a circular
bubble having a radius r0 = 0.25 and centered on (0.5, 0.5) in a computational domain [0, 1] × [0, 2]. The
physical parameters are ρi = 100, ρo = 1000, µi = 1, µo = 10, γ = 24.5 and |g| = 0.98. The no-slip wall
condition ub = 0 is prescribed on the horizontal boundaries, whereas the free slip condition u · ν = 0 and
π∂ΛD(u) · ν = 0 is used on the vertical boundaries.

We first provide further insights into the performances of the fully implicit methods. For an explicit
method, the capillary force is considered as a source term in (3.1), while the fluid and level set
problems are solved in a segregated manner. This method is conditionally stable and a stability constraint
imposes restrictions on the temporal resolution ∆t < ∆tCFL =

√
ρi+ρo

4πγ h3/2 [4]. The convergence orders,
ln(|R(χk

n)|/|R(χk−1
n )|)

ln
(

|R(χk−1
n )|/|R(χk−2

n )|
) with k ⩾ 2, and the residual curves are reported in Table 1 for several values of

∆t. We clearly see the quadratic convergence of the standard Newton method, the improvement by the
McDougall’s method and the cubic convergence of the Kou’s method.

We consider a mesh with 13′194 elements and we report in Table 2 the computing times for serial
simulations on an Intel R⃝ CoreTM i7-4790 (3.6 GHz) processor. The McDougall’s method is usually slightly
better than the standard method, while the Kou’s method performs better for large ∆t. For large ∆t, the
convergence requires more iterations since the starting values are not close enough to the expected solutions.
The extra cost of the additional residual evaluation in the Kou’s method is offset by the cubic convergence. In
what follows, the Kou’s method is our preferred method. We prefer this method to the cubically convergent
method described in [6] since the residual evaluation is three times cheaper than the Jacobian assembly
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Fig. 2. Time evolution of the area and /c for different spatial resolutions and comparison of the final shapes with the reference
solutions [2].

and factorization. For a mesh having 135′110 elements, the CPU times of the residual evaluation, Jacobian
assembly and Jacobian factorization are 31.61 s, 42.59 s and 52.11 s, respectively.

We now perform a comparison with the fully explicit method. Results in Table 2(middle) depict significant
computational savings when using the implicit method. To investigate the stabilizing capabilities of this
method, we compare in Table 2(right) the maximum time step size ∆tmax to ∆tCFL allowed by the stability
condition. Results reveal that the implicit method has a significant stabilizing effect and allows to use larger
time steps, up to 200 times ∆tCFL.

Finally, we proceed with quantitative comparisons with the benchmark results obtained by six different
codes in [2]. Let |Ωi| and |Γ | be the area of the interior domain Ωi and the perimeter of the interface Γ ,
respectively. Let us introduce the circularity /c(t) = 2

√
π|Ωi|/|Γ |, minimum circularity /cmin and incidence

time t|/c=/cmin , center of mass Yc, rise velocity Vc, maximal velocity Vc,max and incidence time t|Vc=Vc,max .
Let |Ωi|⋆ = π/16 represent the exact area of the interior domain. Comparisons of the final shapes at t = 3
and detailed view in the zone of maximal discrepancy reveal quite good congruence for finer meshes, see
Fig. 2. In addition, results show good mass preservation and good agreement of the time evolution of /c with
the reference solutions. In Table 3, quantitative comparisons with the computational results in [2,3,10,11]
show overall very consistent results.

Let NTS be the number of time steps. The spatial accuracy of the numerical approximation of a quantity
ζt is measured by computing normalized errors on successively refined meshes against a reference solution
ζr

t (with h = 1/160). We compute:

|e|1 =
∑NTS

t=1 |ζr
t − ζt|∑NTS

t=1 |ζr
t |

, |e|2 =
(∑NTS

t=1 |ζr
t − ζt|2∑NTS

t=1 |ζr
t |2

)1/2

, |e|∞ = maxt|ζr
t − ζt|

maxt|ζr
t |

and the convergence rate

ROC =
ln
(
|el−1|/|el|

)
ln (hl−1/hl) ,

where l is the mesh refinement level. Results from Table 3 suggest that the bubble’s area |Ωi| has a
convergence order of 2.5 in all norms, while the rise velocity Vc approaches a convergence order of 2 in
all norms.
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Table 3
Comparisons with available published results and convergence history with respect to the spatial resolution for some benchmark
quantities.

5. Conclusion

In this letter a fully implicit and monolithic method to model the dynamics of bubbles has been
developed. We have derived an exact tangent problem without introducing additional mixed variables and
have investigated numerically the performances of two Newton variants with faster convergence orders. We
have shown that the method has great practical utility compared to the explicit method commonly used. It
features an affordable computational burden and maintains stability for significantly larger time steps. This
is part of an ongoing work to model red blood cells [1,8,12,13]. We foresee the coupling with the bilayer
bending force and the cytoskeleton elasticity model.

References

[1] M.-C. Lai, Y. Seol, A short note on Navier-Stokes flows with an incompressible interface and its approximations, Appl.
Math. Lett. 65 (2017) 1–6.

[2] S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman, S. Ganesan, L. Tobiska, Quantitative benchmark computations
of two-dimensional bubble dynamics, Internat. J. Numer. Methods Fluids (ISSN: 1097-0363) 60 (11) (2009) 1259–1288.

[3] J. Klostermann, K. Schaake, R. Schwarze, Numerical simulation of a single rising bubble by VOF with surface compression,
Internat. J. Numer. Methods Fluids 71 (8) (2013) 960–982.

[4] J.U Brackbill, D.B Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992)
335–354.

[5] J. Kou, Y. Li, X. Wang, A modification of Newton method with third-order convergence, Appl. Math. Comput. 181 (2)
(2006) 1106–1111.

[6] J. Kou, Y. Li, X. Wang, Third-order modification of Newton’s method, J. Comput. Appl. Math. 205 (1) (2007) 1–5.
[7] T.J. McDougall, S.J. Wotherspoon, A simple modification of Newton’s method to achieve convergence of order 1 +

√
2,

Appl. Math. Lett. 29 (2014) 20–25.
[8] A. Laadhari, P. Saramito, C. Misbah, An adaptive finite element method for the modeling of the equilibrium of red blood

cells, Internat. J. Numer. Methods Fluids (ISSN: 1097-0363) 80 (7) (2016) 397–428.
[9] Efficient C++ finite element computing with Rheolef, 2016, www.ljk.imag.fr/membres/Pierre.Saramito/rheolef (Accessed

1 November 2016).
[10] L. S̆trubelj, I. Tiselj, B. Mavko, Simulations of free surface flows with implementation of surface tension and interface

sharpening in the two-fluid model, Int. J. Heat Fluid Flow 30 (4) (2009) 741–750.
[11] V. Doyeux, Y. Guyot, V. Chabannes, C. Prud’homme, M. Ismail, Simulation of two-fluid flows using a finite element/level

set method. Application to bubbles and vesicle dynamics, J. Comput. Appl. Math. 246 (2013) 251–259.
[12] E.M. Kolahdouz, D. Salac, A numerical model for the trans-membrane voltage of vesicles, Appl. Math. Lett. 39 (2015)

7–12.
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