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a b s t r a c t

We present a finite element methodology tailored for the simulation of pulsatile flow
in the full aorta and sinus of Valsalva interacting with highly deformable thin leaflets.
We describe an extension of the so-called ‘‘Resistive Immersed Surface’’ method. To
circumvent stability issues resulting from the bad conditioning of the linear system,
especially when flow and geometry become complex after the inclusion of the aorta, we
use a Lagrangemultiplier technique that couples the dynamics of valve and flow. A banded
level set variant allows to address the singularity of the resulting linear system while
featuring, in addition to the parallel implementation, higher accuracy and an affordable
computational burden. High-fidelity computational geometries are built and simulations
are performed under physiological conditions. Several numerical experiments illustrate
the ability of the model to capture the basic fluidic phenomena in both healthy and
pathological configurations. We finally examine numerically the flow dynamics in the
sinus of Valsalva after Transcatheter Aortic Valve Implantation. We show numerically that
flow may be subject to stagnation in the lower part of the sinuses. We highlight thefar-
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reaching implications of this phenomenon andwehope inciting adequate studies to further
investigate its potential clinical consequences.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The aortic valve, referred to as AV, permits oxygenated blood to circulate from the left ventricle through the systemic
circulation. It has three leaflets (or cusps) of very similar size which behave stiff but compliant. They are faced by three
corresponding pouches of the aorta called sinus of Valsalva (SV). Leaflets are thin elastic structures (≈0.2–0.4mm thickness)
with complex anatomical features characterized by a non-homogeneous fibrous texture [1]. They synchronize the opening
in early systole [2], whereas they are driven to closure in late systole by both the fluid vortices trappedwithin the sinuses [3,
4] and the deceleration of the aortic flow [5]. Backflow is prevented during diastole in which high transvalvular pressure
jump occurs [6]. Valvular pathologies, such as stenosis and regurgitation, can affect the normal functioning of valves leading
to the deterioration of life quality. Advancing the computational understanding of the main processes of the valve function,
boosted by the recent advances in mathematics and computer science, is certainly of great potential in the development
and improvement of novel therapies. In spite of increasing interest in the modeling of valves and blood flow in the full
aorta, this coupled problem remains extremely challenging even for commercial software packages. Numerical difficulties
include e.g. the resolution of full fluid–structure interaction problem with large and fast deformations of thin structures,
substantial mesh deformations, high physiological transvalvular pressure discontinuities, handling contact between cusps
when coaptation occurs, stability issueswhen flow becomes complex or in pathological caseswhere transition to turbulence
may occur.

A variety of methods have been developed to model the valves, while considering different levels of complexity. Zero-
dimensional models represent a simplified formalism used to provide computationally cheap physiological description
[1,7–9]. Typically, they allow to set the boundary conditions while being unable to capture the full three-dimensional flow
pattern near the valve [10–12]. Similarly, the one-dimensional models [13,4] are widely used in multiscale strategies to
avoid the three-dimensional modeling of valves [14,15].

Regarding the full three-dimensional modeling of flow in the SV, the coupling of the flow and valve motion is problem-
atic. Numerical approaches remain computationally demanding and severalmodel simplifications are required to tackle this
problem. The Arbitrary Lagrangian Eulerian formulation is ruled out since it is limited to small and moderate structural de-
formations [1,16–19]. Various strategies have investigated the elasticity of the leafletswithout capturing the hemodynamics
in the surroundings [20]. Concerning the interaction with flow dynamics, several works have used commercial softwares
to model thick cusps while modeling the contact between leaflets using penalization approaches [21,22]. The Immersed
Boundary Method (IBM) has been used in [13,23–25] and in the pioneering work of Griffith et al. [26,27,25]. The major lim-
itations of such methodologies remain the high computational burden needed for simulations at physiological conditions.
Recently a purely fluid model was introduced by Laadhari et al. [28] following [6] where the mechanical properties of the
leafletswere disregarded. Themodel features a relatively simple and straightforward implementation and allows significant
computational savings with respect to a full FSI problem, while being able to capture the full three-dimensional description
of flow near the valve. First results are shown promising, but the model needs to be further explored and enriched.

Another challenging problem, tightly related to this context, is the modeling of hemodynamics in the sinus of Valsalva
after Transcatheter Aortic Valve Implantation, referred to as TAVI. A large number of patients suffering from severe aortic
stenosis are not eligible for surgical AV replacement such as elderly (high risk of operative mortality) and younger patients
(inoperable until older ages to avoid multiple invasive surgeries). With more than 100.000 implantations performed world-
wide [29], TAVI enables the valve replacement without an open-heart surgery and consists in placing a prosthetic valve
mounted on a catheter guided stent into a native AV. The heavily calcified native cusps behave usually rigid and play the
role of stiff walls fixed by the stent. Cusp stiffness of severe stenosis results from an increase in bonematrix production lead-
ing to the endochondral bone tissue formation, where various factors promoting osteogenesis (bonemorphogenic protein-2
and -4) are present [30]. Despite the growing literature devoted to the experimental research in this field, little progress has
been reported up to now in the area of computational investigations of hemodynamics after TAVI. Computational studies
can advance the understanding of the hemodynamical implication of TAVI. Observing blood stagnation and low velocity
areas may represent an evaluating criterion of the TAVI efficiency. Clinically, they are considered as a source for increased
probability of thrombosis and embolism (dislodged clot becomes free-floating) which may trigger stroke or heart attack.
Note that stagnation is a well-known major life-threatening complication for patients with mechanical AV prosthesis [31].
To the best of our knowledge, there are no similar numerical investigations for blood flow after TAVI.

The aim of the present work is to present a model to study the fluid dynamics in full aorta and SV at reasonable compu-
tational burden, whilst being able to capture the three-dimensional flow patterns near the valve. Building on earlier work
by Laadhari et al. [28], we improve the existing models to easily perform the full aortic flow simulations. While the origi-
nal model [6] disregards the opening and closing processes, the model presented in [28] allows to capture the movement
of the leaflets but often suffers from instabilities resulting from the setting of the penalty parameter. Indeed, the so-called
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‘‘Resistive Immersed Surface’’ model, referred to as RISM, introduces a penalty term that penalizes the mismatch between
the valve and flow velocities. The main drawbacks of such a model is that the valve behaves like a porous media if the
penalty parameter is small (unphysiological scenario of leakage across the leaflets), while the conditioning of the linear sys-
tem becomes deteriorated when the penalty parameter is set too large. Accordingly, the choice of the penalty parameter is
problematic and the compromise between large and small values is difficult to properly set especially when the flow and
geometry become complex. This problem arises particularly when simulating the hemodynamics in the full aorta and SV.

The present model features the enforcement of the coupling between blood flow and leaflets’ velocities throughout
an exact Lagrange multiplier, which addresses several instability issues related to the RISM. The resulting linear system
is singular because the constraints are only localized on the leaflets. This issue is addressed by using a banded level set
variant, that also enables to significantly reduce the problem size, leading thereby to a similar computational cost to the
RISM. Based on the investigation of the performances of various numerical strategies with respect to the flow complexity,
we state the global solution method. That ensures further stability when complex flow patterns hold. Moreover, this work
enables to model the fluid dynamics in full aorta and SV, while allowing the three-dimensional description of the leaflets
which, to our knowledge, represents one of few works, following those of Griffith et al. using the IBM [27]. Our method
is entirely based on finite element approximation on unstructured meshes. We employ an anisotropic mesh adaptation
technique to improve the computational accuracy in 2D and evaluate at high precision the extent of stagnation zones. We
present several numerical experiments showing the robustness and reliability of the model. Quantitative comparisons with
respect to clinicalmeasurements and existent numerical results are performed. Finally, to our knowledge, thiswork presents
the first computational study of the hemodynamics in the SV after TAVI. Computational results pinpoint that significant
modifications of flow patterns can occur in the lower part of the sinuses, in which flow may be subject to stagnation
promoting subsequently a high risk of thromboembolism.

The paper is organized as follows. In Section 2, we provide the mathematical setting for the valve model and the interac-
tions with the fluid dynamics. After studying the sparsity pattern of the global matrix, a banded level set variant is described
in Section 3. In Section 4 several numerical experiments are presented under healthy and pathological physiological con-
ditions. We thereafter investigate numerically the incidence of blood stagnation after TAVI. We close with some comments
about the findings, model limitations and forthcoming extensions in Section 5.

2. Mathematical formulation

In this section, we describe the mathematical setting for the model coupling the dynamics of flow and valve.

2.1. Direct formulation of the model

It was pointed out in several studies [32] that blood in the aorta and large vasculature remains laminar, and its viscosity
canbe assumed constant since the average shear rate is high enough (>150 s−1) [33,34]. In healthyhumans, a fully developed
turbulence is only observed under particular circumstances [32], and the deceleration phase may be not sufficiently long
to allow a turbulence regime to develop [35]. However, flow instabilities can occur in the deceleration phase during
the systole [36]. The transition to a fully turbulent regime can occur in the case of certain cardiovascular diseases, e.g.
severe stenosis, where the narrowing of the cross-sectional area increases the flow instabilities. In this work, we assume
blood to be laminar [6,26]. The Navier–Stokes equations represent a reasonable approximation of blood as homogeneous,
incompressible and Newtonian fluid.

Let T > 0 represent the period of few cardiac cycles. For any time t ∈ (0, T ), let Ω(t) ⊂ Rd, d = 2, 3, denote the
domain occupied by the blood and valve, and having a Lipschitz continuous boundary ∂Ω(t). Let n be the unit outward
normal vector to ∂Ω(t). Let u and u⋆ denote the velocities of flow and leaflets, respectively. The set of leaflets is denoted by
N = {1, 2, 3}, while δΓi with i ∈ N represent the Dirac measure on each leaflet. Since blood follows the movement of the
valve, the no-slip condition u − u⋆i = 0 on (0, T )× Γi, i ∈ N , is needed.

As pointed out above, the RISM penalizes the deviation from the latter constraint [28]. However, the method suffers
from stability issues if the penalty parameter is set too large, whereas it delivers unphysiological results when choosing
small penalty parameters. To properly address this issue, we introduce an exact Lagrange multiplier λ that enables to
enforce the matching between the velocities of blood and leaflets on Γi, i ∈ N . This Lagrange multiplier can be physically
interpreted as the traction force between the flow and valve. Let σ(u, p) = 2µD(u)− pI be the Cauchy stress tensor, where
D(u) = (∇u + ∇uT )/2 and I represent the strain and identity tensors, respectively. We assume constant density ρ and
dynamic viscosity µ. The coupled problem reads:

find the velocity u, pressure p and Lagrange multiplier λ such that

ρ


∂u
dt

+ u · ∇u


− div σ(u, p)+


i∈N

δΓi λ = 0 in (0, T )×Ω, (2.1)

div u = 0 in (0, T )×Ω. (2.2)
u − u⋆i = 0 on (0, T )× Γi. ∀i ∈ N . (2.3)
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The interface conditions enforce the continuity of the velocity [[u]] = 0 acrossΓi∈N , whereas the Lagrangemultiplier λ helps
to calibrate the discontinuity of the normal stress across Γi∈N such that [[σn]] = −λ. We introduce the Reynolds number
Re = ρUD/µ which expresses the ratio between inertial forces and viscous effects based on the maximum instantaneous
velocity U and the diameter D of the sinotubular junction, see Fig. 18.

Initial conditions are required for the velocity and the leaflets shapes: u(0, .) = u0(.) and Γi(t = 0) = Γi,0, ∀i ∈ N .
We assume sufficient regularity for the leaflets shapes. Suitable boundary conditions (BCs) ensure the well-posedness of the
problem. For given ub and p̄, let ΓD and ΓN represent two complementary subsets of ∂Ω on which essential and natural BCs
are assigned, respectively. We have u = ub on (0, T ) × ΓD, while the natural boundary condition consists in prescribing
the normal component of the normal Cauchy stresses: σn = −p̄n on (0, T ) × ΓN . In Examples 1, ΓD = Γw ∪ Γin and
ΓN = ∂Ω \ΓD. In Examples 2-3-4-5, ΓD is composed of the aortic wall Γw , while ΓN includes the remaining boundaries, see
Figs. 3 and 18. In the current work, the aortic wall is assumed rigid following [27], on which we prescribe a homogeneous
Dirichlet boundary condition ub = 0 on Γw .

We consider two ways to set the inlet BC which consist in either prescribing a periodic time-dependent velocity profile
(essential BC) or pressure waveform within the physiological range (natural BC). Physiological pressure pulses are always
used to set boundary conditions on outlets. A lumped-parametermodel, consisting of a three-elementWindkessel, allows to
estimate the global arterial properties downstream. It consists in an electrical analog with a proximal resistance Rp placed
in series with a total arterial compliance C and a vascular resistance Rd, see Fig. 1. Physiological pressures on outlets are
obtained by assessing the model parameters in a suitable manner. By performing an electrical analogy, the model results in
a second-order ordinary differential equation that describes the relation between the time-dependent pressure p̄ and the
volumetric flow rate Q at the corresponding boundary. The problem reads:

PW3E : p̄(t)+ CRd
dp̄(t)
dt

=

Rp + Rd


Q (t)+ CRpRd

dQ (t)
dt

, t ∈ (0, T ). (2.4)

In what follows, we denote ΓN = ∪k∈K ΓN,k where K represents the set of boundaries onwhich natural boundary conditions
are assigned. The corresponding pressures are called p̄k with k ∈ K .

To write the variational formulation, we first introduce the spaces of admissible velocities and pressures:

V(ub) =


v ∈


H1 (Ω)

d
: v = ub onΣD


and Q =


q ∈ L2 (Ω) :


Ω

q dx = 0

.

Testing ((2.1)–(2.2)–(2.3)) against suitable functions, the problem reads:
P0: find u ∈ C0


(0, T ), L2 (Ω)d


∩ L2 ((0, T ),V(ub)), p ∈ L2 ((0, T ),Q) and λ ∈ L2


(0, T ),H−

1
2 (∪i∈N Γi)

d

such that

Ω

ρ


∂u
dt

+ u · ∇u


· v +


Ω

2µD(u) : D(v)−


Ω

p div v +


i∈N


Γi

λ · v =


k∈K


ΓN,k

p̄k n · v, ∀v ∈ V(0), (2.5a)
Ω

q div u = 0, ∀q ∈ L2(Ω), (2.5b)
i∈N


Γi

ξ ·

u − u⋆i


= 0, ∀ξ ∈ H−

1
2 (∪i∈N Γi)

d . (2.5c)

Let us consider some quantities of clinical relevance. Let ⊗ denote the tensorial product between vectors and T ⋆ be the
cardiac cycle period.We introduce thewall shear stressWSS, the time-averagedwall shear stress AWSSV, the time-averaged
wall shear stress magnitude AWSSM and the oscillatory shear index OSI as follows:

WSS
2µ

= (I − n ⊗ n) D(u)n, AWSSV =


 T⋆

0

WSS
T ⋆

 , AWSSM =
1
T ⋆

 T⋆

0
|WSS| and

OSI =
1
2


1 −

AWSSV
AWSSM


.

The WSS is frequently employed by medical doctors in diagnosis and clinical decision-making. It represents the tangential
drag force per unit area induced by the tangential movement of blood and experienced by the aortic wall. It is given by the
tangential component of the normal stress tensor. The AWSSV represents the time-averaged shear stress that the arterial
wall is subjected to over the cardiac cycle. The OSI indicates the deflection of the WSS from the flow predominant direction
along the cardiac cycle. It varies from 0 when no cyclic directional changes are observed to 0.5 obtained when 2π radian
deflection of the WSS vector is observed.

To compute the WSS, let ∇∥ ≡ (I − n ⊗ n)∇ be the two-dimensional gradient operator evaluated in the tangent plane
to Γw . In the local coordinate system, u expresses


û1, û2, û3

T . Because of the rigidity assumption of the aortic wall, the
relation ∇∥û3 = 0 holds. By writing WSS in the local frame of reference, a straightforward simpler relation is obtained:
WSS = µ


ŵ2,−ŵ1, 0

T where w ≡

ŵ1, ŵ2, ŵ3

T
= curl u. Consequently, we obtain |WSS| = µ|curl u|.
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Fig. 1. Schematic representation of the three-element Windkessel model used to prescribe physiological pressure waveform on outlets.

Fig. 2. Illustration of the Eulerian representation of the tricuspid aortic valve.

2.2. Valve model

2.2.1. Eulerian description of leaflets
The geometrical description of the leaflets can be typically performed using either boundary-conforming (Lagrangian) or

non-boundary conforming (Eulerian) approaches. In a Lagrangian framework, a mesh fitting the leaflets follows explicitly
their movement. A robust remeshing tool is required to remesh the computational domain, while avoiding the generation
of reversed elements. In an Eulerian framework, the leaflets are implicitly described and the remeshing is not required.
Each leaflet is geometrically considered as an open surface, which is defined as a co-dimension one of a manifold having
a boundary (free edge and intersection with the aortic wall) and embedded in the three-dimensional Euclidean space.
Accordingly, we use a construction based on two level set embedding functions [28]. Each leaflet Γi, i ∈ N is described
using a primary level set ϕi and a secondary level set ψi such that:

Γi(t) =


x(t) ∈ Ω : ϕi(t; x) = 0 and ψi(t; x) 6 0


, t ∈ (0, T ), i ∈ N . (2.6)

The function ψ enables to circumscribe the area where the zero-level set of ϕ describes the leaflet as illustrated in Fig. 2.
We use second-order algebraic descriptions for the leaflets at both open and closed positions. The corresponding real coeffi-
cients are obtained by fixing some descriptors introduced to build a high-fidelity computational geometry of the leaflets
based on some experimental measurements available in the published literature [37–40]. To avoid having too large or
too small gradients in the vicinity of the leaflets, we proceed with a preprocessing step that enables to redress the level
set functions ϕi, i ∈ N , as signed distance functions. We disregard the mechanical properties of the leaflets, whereas
we focus on investigating the capability of this model to study the fluid dynamics in the full aorta while considering the
three-dimensional valvular shapes.

The problem P0 involves integrals over the moving leaflets Γi, i ∈ N . In a purely Lagrangian framework, these integrals
need a mesh that explicitly fits the leaflets. To avoid tackling remeshing issues resulting from the large deformations and
quick movement of the leaflets, all surface integrals are replaced by their regularized counterparts, see e.g. [41]. Let ε be
a regularization parameter proportional to the local mesh size. The sharp Heaviside function H and Dirac measure δ are
regularized within a banded region of width 2ε as follows:

Hε(φ) =


0, if φ < −ε

1
2


1 +

φ

ε
+

sin

πφ

ε


π


, if |φ| 6 ε

1 otherwise.

and δε(φ) =


1
2ε


1 + cos


πφ

ε


, if |φ| 6 ε

0 otherwise.
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Hence, the surface integrals in P0 are replaced by integrals over the entire domain Ω , leading to a regularized problem
Pε(u; p,λ). In particular, we have:

i∈N


Γi

λ · v ds ≈


Ω


i∈N

|∇ϕi| δε (ϕi) Hε(1 − ψi)λ · v dx.

Wenow focus on the computation of the leaflets’ velocities u⋆i with i ∈ N . Since everymaterial point x(t) ∈ Γi(t) shall verify
the equation ϕi


t, x(t)


= 0, the time derivative leads to ∂tϕi + u⋆i · ∇ϕi = 0 with u⋆i ≡ ∂tx on Γi. Since ∇ϕi describes the

normal direction to Γi, i ∈ N , only the normal component of the cusp’s velocity has an effective contribution to its motion.
Let 1t be the time step size and ϕn

i be the computed solution at time tn. By considering a second order differentiation
formula, the velocity of the leaflet Γi can be approximated by:

u⋆i

tn


≈
−3ϕn

i + 4ϕn−1
i − ϕn−2

i

21t
∇ϕn

i∇ϕn
i

2 , ∀i ∈ N .

In the case of TAVI, we assume that the native leaflets, referred to as Si with i ∈ N , are highly calcified and behave stiff.
Accordingly, we assume u⋆Si = 0 for all i ∈ N .

2.2.2. Reduced order model for the dynamics of valves
We aim to couple the three-dimensional model describing the fluid dynamics with a reduced-order model tracking

the movement of anatomically correct three-dimensional valve. Although the reduced-order models are less detailed than
three-dimensional distributed parameter models, they enable to circumvent several numerical difficulties related to the
large displacements of the leaflets, whilst capturing the three-dimensional flow profile around the valve. To achieve this
purpose, a geometrical multiscale coupling model enables to follow the cusps movement described through their aperture
angle θ . Based on experimental and clinical observations, Korakianitis and Shi introduced a reduced order model describing
the valve movement as a function of θ [8]. Indeed, the dynamics is analyzed by considering the hemodynamical charac-
terization of the flow upstream and downstream the valve during the cardiac cycle. The model balances the angular cusp
accelerationwith various angularmomenta affecting the valvemotion due to the friction fromneighboring tissue resistance,
the transvalvular pressure gradient1P , the dynamicmotion of blood acting on the cusps, and the effect of downstream vor-
tices. The model reads:

Pθ :
d2θ
dt2

+ Ψf
dθ
dt

= Ψp1P cos θ + ΨqQ cos θ + ΨvQ sin 2θ
max(1P, 0)

1P
, θ ∈


θmin, θmax


with Ψf = 50 s−1, Ψp = 4.125

rad cm2

s2 dyn
, Ψq = 2

rad
s cm3

and Ψv = 7
rad

s cm3
.

At the numerical level, we approximate the left ventricular and the aortic pressures by themean pressures measured on the
annulus proximal to the valve and the sinotubular junction, respectively, as depicted in Fig. 18.

This model was validated, as it provided comparable numerical results to those illustrated in medical textbooks, see [8].
The non-binary valve state is then described through a state parameter:Ξ(θ) = (cos θmin − cos θ)2/(cos θmin − cos θmax)

2.
The minimal angle θmin corresponds to a fully closed position, i.e. Ξ = 0, whereas the maximum opening angle θmax
corresponds to a fully open position, i.e.Ξ = 1. The state parameterΞ ∈ [0, 1] enables to determine the leaflets geometrical
shape Γi(t), i ∈ N , at any intermediate position by interpolating the functions ϕi and ψi describing the valve at the fully
open and fully closed positions.

This model enables to readily recover different pathological scenarios including regurgitation and stenosis. Stenosis
is modeled by restricting the maximum opening angle θmax, while it suffices to constraint the minimal angle θmin in the
regurgitant case by imposing a larger value that prevents the valve to completely close. In the examples, θ ∈ [5, 75] ° in
the healthy case, while θmax = 59 ° in the stenotic case. To improve the accuracy during the prompt opening and closing
processes, we reduce the time step size during these events. A boolean function valveState is considered and returns
the Boolean value false whenever the left ventricular pressure exceeds the aortic pressure for a closed valve, or when a
backflow is observed for a fully open valve, see the graphical illustration in Fig. 10.

3. Numerical approximation and implementation details

In this section we first recapitulate the computational geometries and themeshing tools/procedures used in both 2D and
3D. The method used to approximate theWindkessel model is then briefly presented. We subsequently discuss the sparsity
pattern of the global matrix and we state the assembling approach. Finally, we describe the solution method based on the
results of different algorithmic choices and the parallel performances.
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Fig. 3. Left: Dimensions and nomenclature of the sinus of Valsalva in the three-dimensional case. Middle: FE network for a healthy valve. Right: TAVI with
healthy (red) and calcified (blue) leaflets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Set-up andmesh adaptation in the two-dimensional case. Adaptedmeshes and corresponding velocity solution in both cases of healthy aortic valve
and TAVI.

3.1. Handling of geometries and meshes

Realistic computational geometries in 3D. Three computational geometries are considered in our 3D examples. First, the
geometry of the aortic root in Example (4.1.1), Example (4.3) and Example (4.5) is made up of the left ventricular outflow
tract, the SV, the sino-tubular junction and a portion of the ascending aorta, see Fig. 3. Although the geometry is not patient-
specific, various anatomical dimensions are respected and we base the geometry construction on the data reported in
[37–40]. The computational domain and the characteristic dimensions are reported in Fig. 3.

Second, the geometry of the aorta used in Example (4.4) is patient-specific and obtained from MRI images. The origi-
nal mesh can be found on the Gmsh website.1 The mesh depicted in Fig. 18 is built by joining the aorta on the top of the
aforementioned geometry of the aortic root. To that end, the initial surfacemesh in the stereolithography (STL) format is re-
paired and locally smoothed by using the softwaresMeshLab2 andNetfabb.3 This triangularmesh is then remeshed using the
Frontal algorithm in Gmsh. Volumetric meshes, composed by fully unstructured tetrahedral elements, are subsequently
constructed using Gmsh.We also use the open-source optimizer from Netgen [42] to enhance the tetrahedral mesh quality
by maximizing the ratio between the radii of the inscribed and the circumscribed spheres in each tetrahedra. We thereafter
use the software Autodesk Maya4 to properly combine the aorta and the aortic root at the level of the sinotubular junction.

Finally, the patient-specific geometry used in Example (4.1.2) belongs to a 17-year old subject with amild thoracic aortic
coarctation. The tetrahedralmesh is obtained by first attaching the geometry of the SV to the patient-specific aorta, and then
meshing the entire geometry by following the aforementioned procedure.
Geometries in 2D and mesh adaptation technique. In the two-dimensional case, we use the same geometry designed in [43],
see Fig. 4. Although the flow through the AV is inherently 3D, the legitimacy of a 2D geometry is supported by the good
agreement between the numerical results of hemodynamics in 2D, the in vitro ultrasound measurements and the ex vivo
studies revealed in [43].We also use an adaptivemesh refinement procedure that particularly helps to accurately capture the
stagnation and the recirculation zones with high mesh density therein. Moreover, it enables to enhance the computational
accuracy in areas with complex flow patterns, see Fig. 4.

The technique is based on the work of [44], and we use the bidirectional anisotropic mesh generator BAMG [45]. Based
on the computation of the metric tensor of a given criterion ς , the mesh is adapted in such a way that the interpolation
error becomes equidistributed, and the maximal and minimal directions of stretching become adjusted to the directions of
maximal and minimal errors. We refer to [41] for a detailed description of the meshing procedure. In the present work, we

1 Gmsh—http://www.geuz.org/gmsh.
2 MeshLab—http://meshlab.sourceforge.net.
3 Netfabb—http://www.netfabb.com.
4 Maya—http://www.autodesk.com/products/maya.

http://www.geuz.org/gmsh
http://meshlab.sourceforge.net
http://www.netfabb.com
http://www.autodesk.com/products/maya
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Fig. 5. Sparsity pattern of the global matrix exported in the standardMatrix-Market format. Left: Constraint (2.3) extended to the entireΩ (matrix size =

73132). Middle: Discretized problem Pε with λ ∈ Ω (matrix size = 73132). Right: Discretized problem Pε with λh ∈ Bh,ε (matrix size = 58552). The
size of the global matrix obtained using the Resistive Immersed Surface method is equal to 55342 .

introduce a different meshing criterion aggregating the kinetic and viscous energies at every time step. The corresponding
Hessian matrix reads:

H ≡ ∇∇ς(uh) = ∇∇


ρ

2

uh
2 + 2µ

D(uh)
21/2

.

We use an L2 projection to obtain a piecewise linear and continuous approximation of the metric matrix. Some generated
meshes and the corresponding velocity solution in both cases of healthy AV and TAVI are depicted in Fig. 4. We clearly see
the various meshes highly refined according to the flow vortices and also in the vicinity of the healthy and calcified leaflets.
More accurate computations are then expected, in particular when quantifying the stagnation zones in Example (4.5), see
Movie 1 in the supplementary material (see Appendix A). The extension of this approach to the three-dimensional case
remains a challenging topic and is definitely beyond the scope of this work.

3.2. Sparsity pattern and banded level set approach

We consider a partition T ofΩ consisting of geometrically conforming open simplicial elements K (triangles for d = 2
or tetrahedra for d = 3), such thatΩ = ∪K∈T . For all K ∈ T , let hK denote the diameter of K . The mesh size is defined as
the largest element diameter h = maxK∈Th hK . We use the notation Th for a mesh T having a mesh size h.

We intend to give better insight into the structure of the matrix of the linear system corresponding to the discretized
problemPε . To display the sparsity pattern of the globalmatrix, we use the particularMatrix-Market format5 (ASCII-based),
and the file is converted afterwards into the Matlab sparse format.6 The latter format is elaborated in such a way that only
the non-zero entries are encoded, and the corresponding coordinates are explicitly stored.

We assemble and visualize thematrix of the linear system of the discretized problem in Fig. 5 (middle), showing a sparse
and symmetric block-structure. In addition, this matrix is singular since several rows and columns are empty, and a direct
solver cannot be used. Indeed, the Lagrangemultiplierλ is required to enforce the constraint (2.3) only in a small surrounding
of Γi, i ∈ N , but it was extended to the entire domain Ω , see Section 2.2.1. Consequently, zero entries correspond in the
global matrix of the linear system to the extended values of λ outside the regularized surfaces Γi, i ∈ N . Hence, the global
matrix is not invertible and results in the singularity of the linear system.

To visualize this singularity, we replace the constraint (2.3) by u = u⋆ in the entireΩ (unphysiological meaning), andwe
assemble the corresponding linear system. In Fig. 5 (left), we observe a block-structuredmatrix but without the set of empty
rows and columns. To address the singularity issue, we rather define the Lagrange multiplier λ only in a banded domain of
width 2ε around the leaflets:

Bh,ε(t) =


K ∈ Th : δε (ϕi) ≠ 0, ∀i ∈ N


.

Only the coefficients that correspond to these elements are considered in the global matrix. The resulting global matrix
is visualized in Fig. 5 (right), showing that the singularity of the global matrix is addressed (empty rows and columns
eliminated). Remark that the new linear system has a similar size as the linear system obtained by the RIS method. In
summary, the present approach features as similar computational cost as the RIS method and allows to avoid the arbitrary
setting of large penalty coefficients that can harm the conditioning of the linear system.

5 Matrix-Market format—http://math.nist.gov/MatrixMarket/index.html.
6 Matlab—http://ch.mathworks.com/.

http://math.nist.gov/MatrixMarket/index.html
http://ch.mathworks.com/
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Fig. 6. Snapshots showing the aortic valve and corresponding mesh bands Bh,ε with respect to the state parameterΞ .

We introduce the following finite-dimensional spaces:

Xh =


u ∈


C0 Ωd : u|K ∈


P2(K)

d
,∀K ∈ Th


, Vh(ub) = Xh ∩ V(ub)

and Qh =


q ∈ Q ∩ C0 Ω : q|K ∈ P1(K), ∀K ∈ Th


.

To fulfill the inf–sup condition, the Taylor–Hood finite elements are considered for the approximation of the velocity and
the pressure [46]. The discretized Lagrange multiplier λh belongs to the finite element space:

Wh,ε =


ξ ∈


L2(Bh,ε)

d
∩


C0(Xh,ε)

d
: ξ|K ∈


P2
d
, ∀K ∈ Bh,ε


,

which depends now on the dynamic movement of the valve. In Fig. 6, we provide snapshots of the mesh bands Bh,ε and the
corresponding state parameterΞ obtained in the case of a healthy aortic valve.

3.3. Fully discrete finite element approximation

In this subsection,we consider a fully discrete variant of the problemPε .We first present the different implicit strategies,
and we set afterwards the solution method with respect to the flow complexity.

We consider the partitioning tn, n = 0, . . . ,N − 1 of [0, T ] into uniform time steps1t . To follow the fast movement of
the leaflets, we proceed with a time step size adaptation (reduction by a factor ten) whenever the valvemoves. That enables
to better capture the flow pattern during the opening and closing phases. Since the Reynolds number becomes relatively
large around the peak of systole (especially in pathological cases), numerical instabilities can be triggered and we similarly
proceed with time step reduction when Re becomes bigger than a fixed threshold value.

For any n > 1 and i ∈ N , we denote by un
ε,h, p

n
ε,h, λ

n
ε,h, ϕ

n
i,ε,h and ψn

i,ε,h the approximation of uε , pε , λε , ϕi,ε and ψi,ε in

space at time step n, respectively. For given u, v,w ∈

H1(Ω)

d, p ∈ L2(Ω),w ∈ L∞(Ω), n ∈

L∞

Γout,k

d and p̄ ∈ R, we
introduce the weighted multi-linear forms:

m(u, v;w) =


Ω

w u · v; mΓk(p̄, v; n) =


Γout,k

p̄ n · v; a(u, v;w) =


Ω

2w D(u) : D(v);

b(v, p) = −


Ω

p div v and c(u, v;w,w) =


Λ

w

(u · ∇)w + (w · ∇) u


· v.

3.3.1. Strategy I: fixed-point scheme
The nonlinear problemPε is reduced to a sequence of linear subproblems by using the fixed-point algorithm.We employ

a second order characteristics method to approximate the inertia term in (2.1). Let χ(·, x, t) be the characteristic curve
passing at time t through x ∈ Ω . The material derivative is approximated by

∂

∂τ


u

χ(tn, x; τ), τ

 
τ=tn

≈

3u(tn, x)− 4u

tn−1, χ

(1)
n−1(x)


+ u


tn−2, χ

(2)
n−2(x)


21t

,

where ũ = 2un
− un−1 is the second order extrapolation of the velocity, χ (1)n−1(x) = x − 1t ũ(x) is the first-order

characteristics, andχ (2)n−2(x) = x−21t ũ(x) is the second-order characteristics. The overall scheme is detailed inAlgorithm1,
where the inner loop is preceded by the computation of the new valve position by solving Pθ . At the computational level,
the fixed-point iteration is repeated until the relative error becomes smaller than a given tolerance ϵfp = 10−6. Remark that
the fixed-point algorithmmight benefit from an adaptive relaxation parameter such as the generalized Aitken method [47].



A. Laadhari, G. Székely / Journal of Computational and Applied Mathematics 319 (2017) 236–261 245

Since the convergence of the latter method is not always guaranteed, we here restrict ourselves to the fixed-point algorithm
and rather focus on Newton-like algorithms.

Algorithm 1 Fixed-point strategy
1: Let n = 0 and


u0
ε,h, p

0
ε,h,λ

0
ε,h


be the known initial condition

2: for n = 1, . . . , nmax = T/∆t do
3: Let


un+1,−1
ε,h , pn+1,−1

ε,h ,λ
n+1,−1
ε,h


=


un+1,0
ε,h , pn+1,0

ε,h ,λ
n+1,0
ε,h


=

un
ε,h, p

n
ε,h,λ

n
ε,h


being known

4: Compute

ϕn
i,h, ψ

n
i,h


Q2

h , ∀i ∈ N and u⋆,nh ∈ Vh(ub)
5: for k = 0, . . . , kmax do
6: Let


un+1,k
ε,h , pn+1,k

ε,h ,λ
n+1,k
ε,h


and


un+1,k−1
ε,h , pn+1,k−1

ε,h ,λ
n+1,k−1
ε,h


being known

7: Solve the following linear subproblem:
P

n,k
ε,h: find un+1,k+1

ε,h ∈ Vh(ub), p
n+1,k+1
ε,h ∈ Qh and λ

n+1,k+1
ε,h ∈ Wh such that

m

3un+1,k+1

ε,h , v;
ρ

2∆t


+ a


un+1,k+1
ε,h , v;µ


+ b


v, pn+1,k+1

ε,h


+


i∈N

m

λn+1,k+1, v; |∇ϕn

i,h| δε

ϕn
i,h

 
1 − Hε(ψ

n
i,h)


= m

4un+1,k

ε,h ◦ Xn+1,k
− un+1,k−1

ε,h ◦ Xn+1,k−1, v;
ρ

2∆t


+


k∈K

mΓk (p̄k, v; n)

b

un+1,k+1
ε,h , q


= 0

i∈N

m

un+1,k+1
ε,h ,w; |∇φn

i,h|δε

φn
i,h

 
1 − Hε(ψ

n
i,h)
 

=


i∈N

m

u⋆,nh ,w; |∇φn

i,h|δε

φn
i,h

 
1 − Hε(ψ

n
i,h)
 

for all v ∈ Vh(0), q ∈ Qh andw ∈ Vh(0).

8: if
|un+1,k+1
ε,h −un+1,k

ε,h |1,Ω

|un+1,k
ε,h |1,Ω

+
|pn+1,k+1
ε,h −pn+1,k

ε,h |0,Ω

|pn+1,k
ε,h |0,Ω

+


i∈N

|λ
n+1,k+1
ε,h −λ

n+1,k
ε,h |0,Γi

|λ
n+1,k
ε,h |0,Γi

≤ ϵfp then

9: Set

un+1
ε,h , p

n+1
ε,h ,λ

n+1
ε,h


=


un+1,k+1
ε,h , pn+1,k+1

ε,h ,λ
n+1,k+1
ε,h


10: Stop the k loop
11: end if
12: end for
13: end for

3.3.2. Strategy II: Newton–Raphson algorithm
We solve the nonlinear problem Pε by using the Newton–Raphson method to improve the linear convergence rate

characterizing the fixed-point algorithm. For the discretization of the material derivative, we use the backward differen-
tiation formula of second order rather than the characteristics method. The scheme is bootstrapped by the initial conditions
u−1

= u0
= u0, where u−1 is only a convenient notation. Let χ = (u; p,λ) represent the global vector of unknowns where

the semicolon symbol separates the primal variable u and the Lagrange multipliers p and λ. For any n > 1 and i ∈ N , we
compute the variables ϕn−1

i , ψn−1
i and u⋆,n−1. Let R denote the global residual vector:

R(χ) ≡


Ru(u, p,λ)
Rp(u)
Rλ(u)


=


ρ


3u − 4un−1

+ un−2

21t
.+ u · ∇u


− div σ(u, p)+


i∈N

δΓi λ −


k∈K

δΓN,k p̄kn

div u
u − u⋆,n−1

 .
After the time discretization, the problem Pε consists in finding χn such that R(χn) = 0, for any n > 1. The Newton al-
gorithm reduces this problem into a sequence of linear sub-problems. Let DR(χ)[δχ] denote the Fréchet derivative of R in
the direction δχ. Given the solution at time tn, we compute the solution at tn+1 such that: for any subiteration k > 0, χk is
known and the problem consists in finding:

χk+1
= χk

+ δχk with DR(χk)[δχk
] = −R(χk).

The starting value χ0 is assigned by performing a second order extrapolation of the solution at previous time steps. The
method is applied recursively until a stopping criteria based on the computation of the residual is satisfied. In what fol-
lows, we drop the subscript n referring to the time whenever it is clear from the context. We then proceed with the space
discretization. The Galerkin scheme of the tangent problem reads:

P
n,k
ε,h : given ϕn

i,h, ψ
n
i,h and u⋆,nh ,∀i ∈ N ;

find δun+1,k+1
ε,h ∈ Vh(ub), δp

n+1,k+1
ε,h ∈ Qh and δλ

n+1,k+1
ε,h ∈ Wh such that
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m

δun+1,k+1

ε,h , v;
3ρ
21t


+ c


δun+1,k+1

ε,h , v; ρ, un+1,k
ε,h


+ a


δun+1,k+1

ε,h , v;µ


+ b

v, δpn+1,k+1

ε,h


+


i∈N

m

δλ

n+1,k+1
ε,h , v; |∇ϕn

i,h|δε

ϕn
i,h

 
1 − Hε


ψn

i,h


= −


Ru


un+1,k
ε,h ; pn+1,k

ε,h ,λ
n+1,k
ε,h


, v


V′
h,Vh(0)

, (3.2a)

b

δun+1,k+1

ε,h , q


= −


Rp


un+1,k
ε,h


, q


Q′
h,Qh

, (3.2b)


i∈N

m

δun+1,k+1

ε,h ,w; |∇ϕn
i,h|δε


ϕn
i,h

 
1 − Hε(ψ

n
i,h)


= −


Rλ


un+1,k
ε,h


,w


W′
h,Wh

, (3.2c)

for all v ∈ Vh(0), q ∈ Qh and w ∈ Vh(0). The prime symbol (′) stands for the corresponding dual space, and the angle
brackets


·, ·

represents the dual product.

Algorithm 2 Damped Newton strategy
1: Set Newton tolerance ϵ, and let χ0

ε,h be the known initial condition
2: for n = 1, . . . , nmax = T/∆t do
3: Initialize Newton residual ϵn+1,k

= 2ϵ
4: Initialize the velocity by a second order extrapolated prediction un+1,−1

ε,h = un+1,0
ε,h = 2un

ε,h − un−1
ε,h

5: Compute (ϕn
i,h, ψ

n
i,h) ∈ Q2

h , ∀i ∈ N and u⋆,nh ∈ Vh(ub)
6: for k = 1, . . . do
7: Compute δχn+1,k+1

ε,h from P
n,k
ε,h(3.2a-3.2b-3.2c).

8: Compute step size αn+1,k+1 by backtracking line search.
9: Update χ

n+1,k+1
ε,h = χ

n+1,k
ε,h + αn+1,k+1δχ

n+1,k+1
ε,h .

10: Compute Newton residual ϵn+1,k+1
=
Rn+1,k+1

u,h


V′
h

11: if εn+1,k+1 < ϵN then
12: Break
13: end if
14: end for
15: Update solution un+1

ε,h = un+1,k+1
ε,h .

16: end for

3.3.3. Strategy III: damped-Newton algorithm
Although Strategy II features a quadratic convergence and allowsmore stability compared to Strategy I, it diverges when

the starting value is not close enough to the expected solution. Stability issues can arisewhen Re becomes relatively large and
the flow becomes closer to the turbulent regime. To improve the convergence properties, the initialization of the algorithm
is set using a damped-Newton strategy. That consists in adapting the length step using a damping factor αn,k

∈ (0, 1] and
maintaining the same descent direction of the Newton scheme. The increment reads:

χn,k
= χn,k−1

+ αn,kδχn,k

αn,k

= 1 reduces the strategy to a pure Newton–Raphson algorithm

.

Hereafter, we briefly describe the algorithm, while a detailed description is available in [48]. Let us consider the space
S = V(ub) × Q × H−1/2 (∪i∈N Γi)

d. Let P be a non-singular operator which is easy to invert, and it will be used as a
non-linear preconditioner. Let us introduce F : χ −→

P−1R(χ)
2
S such that P = I means that no preconditioner is

considered. A line-search subproblem is introduced and it minimizes the function f : α −→ F

χn,k

+ αδχn,k

depending

on the damping parameter α. Its derivative with respect to α reads:

f ′(α) =


F ′(χ + αδχ), δχ


S′,S

= 2

P−1R(χ + αδχ), R′(χ + αδχ)P−1δχ


S,S′

.

A strictly decreasing sequence of the damping parameter is then obtained using a second order recurrence algorithm. We
initialize α to 1 and we set a minimal step length αmin = 1/10. The backtracking line-search is only required when the
solutions at two consecutive time steps are not close enough, for instance, near the peak of systole or in a stenotic case.
Strategy III is detailed in Algorithm 2.

3.4. Global strategy and parallel performances

In this section, we investigate the stability of the numerical solver with respect to the flow complexity. In light of the
numerical observations, the solution method is adequately stated.
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Fig. 7. Convergence properties of residuals for several values of the Reynolds number. (left) Results obtained by the fixed-point (FP) algorithm. (middle)
Results obtained by the Newton (N) algorithm. (right) Results obtained by the damped-Newton (DN) algorithm.

Fig. 8. Comparison, in terms of number of iterations, between different strategies over a complete heart cycle.

Weconsider the valve in the open position andwe solve the 3D fluid problemby prescribing the flow rate onΓin (essential
BC) and a fixed pressure equal to 105 dyn/cm2 on ΓN (natural BC). The valve remains in the same position during the entire
simulation. To characterize the flow complexity, we evaluate the Reynolds number with respect to the maximal velocity
magnitude computed on Γin.

In what follows, the acronyms FP, N and DN stand for fixed-point, Newton and damped-Newton algorithms, respectively.
We denote by Re⋆i with i = fp,N,DN the maximum Reynolds number for which a stable solution is obtained when using
the fixed-point, Newton or damped-Newton algorithm, respectively.

3.4.1. Algorithmic strategy
We proceed with a comparative study of the convergence properties with respect to an increasing value of the flow rate

prescribed on Γin. The residual tracings are plotted in the semi-log scale. Fig. 7 (left) shows the linear convergence behavior
of Strategy I. It means that the residual converges exponentially, as expected, with respect to the fixed-point iterations k.
However, the convergence is achieved whenever Re remains below a specific threshold value Re⋆fp = 10 422. For a healthy
person, this value can characterize blood flow in the ascending aorta during the systole. In addition, we observe that the
number of iterations required to reach the convergence becomes large when Re increases: almost about 30 iterations for
Re ≈ 10 000. Accordingly, Strategy I is not beneficial for the simulation of even a mild aortic stenosis because of its high
computational cost and its convergence failure.

By using the Strategy II, the quadratic convergence is observed for larger Re, up to Re = 15 250, see Fig. 7 (middle).
Compared to Strategy I, the number of iterations required to reach the convergence is significantly smaller. By increasing Re,
the quadratic convergence is deteriorated until reaching a threshold value Re⋆N = 15 323, beyond it, the algorithm diverges.
Fig. 7 (right) shows that the convergence is slightly improved for relatively large Re when using Strategy III. Indeed, the
starting values of the Newton loop become far from the expected solutions when complex flow regimes occur, and the
backtracking line-search addresses some convergence issues related to this bad initialization. The corresponding threshold
value is Re⋆DN = 16 767.

We now consider the simulations over a complete cardiac cycle. Prescribed pressure profiles are imposed on both Γin
and Γout without solving Pε . We set the tolerance ϵN = 10−7 and we solve until convergence the problem using the
different strategies. Results are depicted in Fig. 8. During the diastole, the number of iterations needed is almost the same
for the different strategies. During the systole, Strategy I requires a higher number of iterations, while Strategy II and
Strategy III behave similarly. The difference between Strategy II and Strategy III is more pronounced during the systole
in the physiological case when Re becomes much higher, see Fig. 7.

Despite the higher number of sub-iterations usually needed by Strategy I, this strategy remains cheaper in terms of CPU
time, see Section 3.4.2. Indeed, the global matrix of the corresponding linear system needs to be assembled only once at
each fixed-point loop. Consequently, we always use Strategy I during diastole, whereas Strategy III is used during systole,
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Fig. 9. Numerical investigations of the strong and weak scaling efficiency.

Fig. 10. Graphical illustration of the numerical methodology.

see Fig. 9(bottom). Strategy III is usually reduced to Strategy II during systole, except for a period around the peak of systole
andduring the deceleration phase. A schematic overviewof the structure of the numericalmethodology is depicted in Fig. 10.

3.4.2. Scalability and parallel performances
To assess the scaling efficiency of the code, we investigate how the computational cost behaveswhen varying the number

of MPI processes or the problem size (degrees of freedom). Each sub-iteration results in three subproblems: the global
assembly, the resolution of the linear system and the export of the solution on the hard disk. The performance of the code
is measured for these particular subproblems. The speedup S = Tp/Ts represents a common metric introduced to compare
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Fig. 11. Temporal evolution of the pressure waveforms obtained with second-order and fourth-order Runge–Kutta methods.

the timing Tp spent on a parallel architecture to the time Ts required for a serial execution. The strong and weak scalabilities
represent the basic indicators used to characterize the parallel performances depending on whether the architecture is
CPU-bound or memory-bound, respectively. The code is strongly scalable if, for the same workload, a two times faster
execution is achieved when the number of CPUs is doubled, yielding to a perfect strong scalability equal to one. Remark that
the higher the slope is, the more strongly scalable the algorithm is. The code is weakly scalable if, for the same workload
per processor, the efficiency remains the same. Perfect weak scalability holds if a perfect overlap of the scalability curves is
observed when different meshes are used.

We build several meshes denoted by m1, m2, m3 and m4 and having 42793, 77821, 128420 and 249578 tetrahedral
elements, respectively. The scalability results are displayed in Fig. 9. The evolution of the speedup with respect to the
MPI processes shows that the global assembly and the resolution phases are almost perfectly scalable, since the different
slopes are close to the optimal linear slope. For coarser meshes, the speedup is deteriorated when the number of processors
increases. Indeed,more time is needed for the communications betweenprocessors rather than for computations. The strong
scalability is not as good when exporting results on the hard disk. Improvements in terms of preconditioners and input and
output timings are needed.

To study the weak scalability, different meshes are built while keeping almost the same problem size per processor. In
the second row of Fig. 9, good weak scaling properties are observed for the assembly, less good but acceptable properties
are observed for the resolution, whereas poor weak scalability is observed for data saving.

We now investigate the scalability of Strategy I and Strategy II during diastole and systole. We display the mean value
of the computing times over ten time iterations, with respect to the degrees of freedom per CPU. The slopes of the different
curves are close to the linear slope, showing acceptable strong and weak scaling. Since the assembly of the linear system
is performed once at each time step, Strategy I is clearly more beneficial than Strategy II during diastole in which the two
strategies require almost a similar number of iterations until convergence, see Fig. 8.

3.5. Numerical approximation of the Windkessel model

We briefly describe the numerical approach used to solve the three-element Windkessel model PW3E (2.4). The flow
rate is first computed after solving the fluid problem ((2.1)–(2.2)–(2.3)). The second-order ordinary differential equation is
converted into two first-order ordinary differential equations. Several numerical methods can be used to solve the resulting
initial value problem such as the Taylor series method, the linear multistep methods and the Runge–Kutta methods. We
refer to [49] for a detailed description of these methods.

In the present work, we consider a two-stage second-order Runge–Kutta method, also known as Heun’s method. The
discretized problem is recursively solved in time. Given the flow rate Q n+1, we compute p̄n+1 such that:

CRd
P̃n+1

∗
− Pn

∗

1t
+ Pn

∗
= RdQ n+1,

CRd
Pn+1

∗
− Pn

∗

1t
+

P̃n+1
∗

+ Pn
∗

2
= RdQ n+1,

p̄n+1
= RpQ n+1

+ Pn+1
∗
.

Let us consider a mesh having 21,793 tetrahedra and we set 1t = 10−3. We consider a simplified diode-like model for
the dynamics of the valve which consists in switching the leaflets between the fully open and fully close positions without
modeling the intermediate positions. A periodic left ventricular pressure is prescribed on the upstream boundary and we
solve PW3E (2.4) until reaching a fully periodic regime. The parameters of the lumped model are tuned and are given by
Rp = 170 dyn s cm−5, Rd = 3000 dyn s cm−5 and C = 8 × 10−4 cm5 dyn−1. Fig. 11 compares the temporal evolution of
the pressure on Γout with the the solution obtained by a more sophisticated fourth-order Runge–Kutta method using the
same model parameters. Results show that the pressure curves obtained by the two methods are almost indistinguishable.
In what follows, we use the second-order Runge–Kutta method.
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Fig. 12. Example 1. (a) Temporal changes in the EOAduring systole and comparisonwith theRISmodel. (b) Streamlineswith colorcoded velocitymagnitude
at peak systole. (c) Comparisons to measurements [51] and available results [52] of the proximal pressure to AoC and the pressure drop across the AoC.
(d) Imposed or computed flow rates at different boundaries. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

4. Numerical examples and cardiovascular simulations

In what follows, we provide a set of numerical examples in both two-dimensional and three-dimensional cases to test
the performance of the finite element method described above. In Example 1, we present a validation of our method by
performing comparisons with other numerical and experimental results. The method is tested in the two-dimensional case
in Example 2. Physiologically relevant computations are provided for both healthy and pathological valves in Example 3.
We perform simulations in the full aorta and sinus of Valsalva in Example 4. Finally, we investigate the incidence of flow
stagnation after TAVI in Example 5.
Software implementation. The presented method has been implemented using the C++ library for scientific computing
Rheolef [50]. Rheolef provides support for distributed-memory parallelism via MPI7 and relies upon the Boost,8 Blas,9
Scotch,10 and UMFPACK11 libraries for much of its functionalities. Results are displayed graphically using the softwares
Paraview12 and Gnuplot.13

4.1. Example 1: model validation

The purpose of this example is twofold. A numerical validation is first obtained by comparing our computational results
to those obtained by the RIS model. A clinical validation is performed subsequently in the case of patient-specific thoracic
aortic coarctation.

4.1.1. Numerical validation versus the RIS model
We first perform a numerical validation by comparing our results with the results obtained by the RIS method while

considering only the fully open or closed positions of the valve, as introduced in [6]. The RISmethodwas previously validated
with respect to a reference simulation based on a 3D-FSI model, where the evaluation of the effective orifice area, referred
to as EOA, is adopted for the comparisons [6]. The EOA is a clinical index measured by transthoracic echocardiography and

7 Message Passing Interface—http://www.mpich.org.
8 Boost libraries—http://www.boost.org.
9 Basic Linear Algebra Subprograms library—http://www.netlib.org/blas.

10 Scotch—http://www.labri.fr/perso/pelegrin/scotch.
11 Umfpack routines—http://www.cise.ufl.edu/research/sparse/umfpack/.
12 Paraview—http://www.paraview.org.
13 Gnuplot—http://www.gnuplot.info.

http://www.mpich.org
http://www.boost.org
http://www.netlib.org/blas
http://www.labri.fr/perso/pelegrin/scotch
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.paraview.org
http://www.gnuplot.info
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Table 1
Example 1. Convergence study showing the computed flow rates (in L/min) at different boundaries for several values of the time step size.

1t = 5 × 10−2 1t = 10−2 1t = 5 × 10−3 1t = 10−3

Brachiocephalic trunk 0.637 0.654 0.656 0.656
Left common carotid artery 0.489 0.331 0.309 0.302
Left subclavian artery 0.291 0.317 0.328 0.334
Descending aorta 2.304 2.419 2.428 2.429

Table 2
Example 1. Average mass flow (in L/min), pressure drop through the coarctation (in dyn/cm2) and comparison with measurements and other studies
through the various branches of the aortic model under rest conditions.

Measurements Computations Errors BC1 [51] BC5 [51]

Total flow at brachiocephalic trunk 0.624 0.656 5.13% 0.65 1.01
Total flow at left common carotid artery 0.312 0.302 3.21% 0.31 0.17
Total flow at left subclavian artery 0.364 0.334 8.24% 0.38 0.19
Total flow at descending aorta 2.41 2.429 0.79% 0.49 2.46
Average pressure at coarctation 8.45 × 104 8.28 × 104 2.01% 6.96 × 104 8.00 × 104

Proximal systolic pressure at coarctation 1.12 × 105 1.34 × 105 19.64% 9.00 × 105 1.41 × 105

frequently used to quantify the AS severity [53]. We adopt the temporal changes in the EOA during systole as a comparison
criterion, as it provides incremental prognostic information beyond what is obtained for the standard EOA [53]. It expresses
the ratio between the instantaneous flow and the instantaneous maximal velocity of the transvalvular flow [53].

We use the same setup of a healthy valve as described in Example 3 (4.3) in which Ω represents the sinus of Valsalva.
We report the results when the fully periodic regime is established. The cardiac output is 4.69 L/min, the heart rate
is 75 beats/min and the systole represents 29.1% of the heart cycle. The mean arterial and peak systolic pressures are
8.9×104 dyn/cm2 and 1.15×105 dyn/cm2, respectively. Fig. 12(c) shows a good agreement between the numerical results
obtained by the present method and the RIS method.

4.1.2. Clinical validation of a patient-specific thoracic aortic coarctation model
We investigate a patient-specific hemodynamics at rest of a 17-year old subject with a mild thoracic aortic coarctation

(AoC) (45% degree of stenosis with a minimal diameter of 10 mm). The aorta is characterized by a reduction in luminal
cross-section which results in high pressure gradient across the coarctation. The anatomical model was provided in the
STACOM 2013 [51], where a Gadolinium-based contrast agent MR angiography was realized with the patient in the supine
position inside a 1.5-T Phillips scanner. Hemodynamic data at rest conditionswere obtained using a phase-contrastmagnetic
resonance imaging (cardiac-gated, 2D, respiratory compensated, phase-contrast cine sequence with through-plane velocity
encoding). The cardiac output of the patient increased to 3.71 L/min and the heart rate is 47 beats per minute.

In this example, essential boundary conditions are prescribed on the inlet and thoracic aorta. We set essential boundary
conditions based on the Fourier reconstruction of the flowwaveforms on Γin and diaphragmatic aorta. Remark that the flow
rate on Γin is forced to zero during diastole. The Windkessel model allows to compute the pressure waveforms imposed
subsequently as natural boundary conditions on the supra-aortic vessels. The temporal evolution of the computed flow
waveforms is depicted in Fig. 12(d). A time step sensitivity study is provided in Table 1, showingminor changes for the time
steps 1t smaller than 10−2. In Table 2, we perform a quantitative comparison of our computational results with respect
to the clinical measurements and some numerical results available in the literature [51], where BC1 and BC5 stand for
particular boundary conditions described in [51]. We also provide the relative errors between our results and the clinical
measurements. We observe particularly the total flow through the supra-aortic branches and the diaphragmatic section of
the aorta. A satisfactory agreement is observed overall.

We also study the pressure gradient through the aortic coarctation and we perform comparison with the invasive pres-
sure wire measurements acquired in a catheterization laboratory-equipped XMR suite [51]. For this purpose, we define the
proximal plane by the point (188.96, 40.18, 253.22) and the normal vector (0.98,−0.09,−0.19), while the distal plane is
characterized by the point (261.97, 23.56, 277.10) and the normal vector (0.99,−0.03,−0.14). We evaluate the pressure
gradient across the AoC as the pressure gradient between the proximal and distal planes. In Fig. 12(c), a comparison between
the computed proximal pressure and the 15-mode Fourier reconstruction of the measured pressure shows good agreement
during the ES, LS and diastole, whereas the maximal mismatch is observed around the PS. However, our numerical results
are comparable to those obtained in [51].

Fig. 12(c) shows a close fit of the simulated pressure gradient with respect to the computations reported in [52], in which
different sets of boundary conditions, referred to as ‘‘plug’’ and ‘‘MRI-based’’, are considered.

4.2. Example 2: two-dimensional test case

Although the aortic flow is inherently three-dimensional, the two-dimensional problem enables to highlight several
features of the model, and helps to test the reduced order model used to follow the movement of the valve. The setup reads
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Fig. 13. Example 2. (left) Snapshots showing the velocity and pressure profiles during the cardiac cycle. (right) Temporal evolution of the mean pressure
on inlet Γin and outlet Γout , the valve opening angle θ and the flow rate measured on Γin .

as follows: a simplified fluid domain was extracted from the published literature [43], see Fig. 4. The initial mesh possesses
117,786 triangular elements almost regular (element radii ratio larger than 0.65 for all elements). The fluid density and
viscosity are ρ = 1 g/cm3 andµ = 0.035 g/cm/s. The fluid is initially at rest and the time step size is1t = 5× 10−3 s. The
three-elementWindkesel problem is disregarded, and we rather prescribe the upstream and downstream pressure profiles.
The valve opening angle is obtained by solving Pθ , see Fig. 13.

Snapshots of the velocity and pressure profiles are displayed in Fig. 13. A positive pressure gradient across the valve
induces the leaflets opening. Hence, a forward flow is observed and an acceleration phase characterizes the ejected flowuntil
the peak of systolewhere themaximumejection velocity is 212 cm/s. The peak of systole corresponds to the largest pressure
gradient across the valve. The accelerating blood flow looksmore stable during this phase thanduring thedecelerationphase,
see snapshots at t = 1.2 s and t = 1.23 s. The temporal evolution of the flow rate onΓout is provided in Fig. 13 (right). During
diastole, the valve is subjected to a high pressure jump, see Fig. 13 at t = 1.77 s. The closure of the valve is triggered by the
flow reversal in the opposite direction to the valve opening. The flow exhibits a complex vortical behavior triggered by the
fast closure of the leaflets and the backward movement of aortic flow into the sinuses. Several flow recirculations are then
observed, see snapshots at t ∈


1.33, 1.39, 1.49, 1.71


s.

4.3. Example 3: three-dimensional simulations in the sinus of Valsalva with healthy and stenotic valves

The aims of this example are twofold. On the one hand, we perform computations in full 3D. On the other hand, we
investigate the model in physiologically relevant conditions with healthy and stenotic valves. In this regard, a realistic
and periodic left-ventricular pressure waveform is imposed on Γin, see Fig. 14, while the three-element Windkessel model
enables to account for the cumulative effects of the distal aorta and vessels. Physiological aortic loading pressure is obtained
by tuning the model parameters, given by Rp = 150 dyn s/cm5, Rd = 4000 dyn s/cm5 and C = 5 × 10−4 cm5/dyn. We
set1t = 10−3 s and we run the simulation for several heart cycles until a periodic pressure waveform is obtained on Γout
(almost after six heartbeats), see Fig. 14.

When the fully periodic regime is established, we plot in Fig. 15 the instantaneous velocity magnitude and velocity field
at a cross-section located downstream of the aortic valve. Snapshots provide a comparison between the profiles obtained
at corresponding times in two successive periods T ⋆8 and T ⋆9 . By visual inspection, we could recognize similar flow patterns,
while small discrepancies are observed in the early diastole. Indeed, that is due to the strong reversal flow which triggers
the valve closure.

Multiple clinically relevant parameters such as systolic, diastolic and mean pressure gradient help diagnostically to
identify healthy cases. The mean pressure gradient represents the integrated pressure gradient between the left ventricular
and the aortic pressures throughout the systole. Small values of the mean pressure gradient characterize a healthy valve
with a very small resistance to flow, while high values characterize the severity of the aortic stenosis. The transvalvular
mean pressure gradient is represented by the shaded blue area in Fig. 14. That is about 7219 dyn/cm2 and is within the
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Fig. 14. Example 3. Multibeat simulations with a healthy aortic valve. Left-Middle: Temporal evolution of the hemodynamical quantities. Right: Snapshots
showing the pressure profiles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Example 3. Cross-section velocity profiles at the same time for successive periods when the fully periodic regime is established.

physiological range of values [0, 13 300] dyn/cm2 as reported in.14 In addition, the peak instantaneous pressure gradient
behaves as the mean pressure gradient and measures the peak of the difference between the left ventricular and the
aortic pressures. During the seventh heartbeat, this peak is about 70 778 dyn/cm2 and is reached at t = 5.06 s. When
the periodic regime is fully established, the diastolic pressure is obtained at early systole and is approximately equal to
6.4 × 104 dyn/cm2. The pressure increases as blood flows into the ascending aorta, and the maximum systolic pressure
is about 1.35 × 105 dyn/cm2. The aortic pulse pressure is approximately 7.1 × 104 dyn/cm2; it represents the maximum

14 http://www.clevelandclinicmeded.com.

http://www.clevelandclinicmeded.com
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Fig. 16. Example 3. Top: Opening of healthy AV at early systole; Volume-rendered blood velocitymagnitude. Bottom: Closure of healthy AV at late systole;
Streamlines showing the vortical flow patterns which trigger the valve closing.

change in the aortic pressure during systole and is given by the difference between the systolic and the diastolic pressure.
Note that the pulse pressure is slightly higher than the experimentally obtained value of about 40mmHg. This difference can
be related to the unphysiological stiffness of the aorta, since a highly compliant aorta has a smaller pulse pressure. Thereafter,
a deceleration phase starts and the pressure falls until the aortic pressure becomes equal to the left ventricular pressure.
The systolic phase lasts about 0.235 s before the closure of the aortic valve. The aortic pressure continues decreasing until
a new cardiac cycle starts. We provide in Fig. 14 snapshots of the pressure distribution in the longitudinal mid surface of
the SV during diastole, showing mainly the ability of the model to capture the sharp pressure jump across the fully closed
leaflets.

The temporal evolution of the angle θ computed by the lumped parameter model Pθ is plotted in Fig. 14. Snapshots
showing the leaflets’ shapes during the opening and closing phases are provided in Fig. 6. Remark that only few positions,
almost between five and ten, are captured in general during the opening and closing phases. The volumetric flow rate wave
is also depicted in Fig. 14.

After simulating seven cardiac cycles, the periodic regime is established and the peak systole is reached at t = 5.09 s.
The peak flow rate is approximately 271.4 cm3/s. Throughout similar studies, this value is within the physiological range.
The peak flow rate reported in [6] is about 180 cm3/s, whereas the corresponding value reported in [27] is about 420 cm3/s.
Snapshots showing the flow profile near the healthy AV in early and late systole are provided in Fig. 16. The peak systolic
velocity corresponds to the maximal flow ejection and is about 150 cm/s. During the deceleration phase, a more complex
flow dynamics holds, see streamlines in Fig. 16. Vortices start on the top of the valvular free-edges, and recirculations trigger
the fast closure of the leaflets. Big vortices are subsequently developed inside the sinuses and allow to keep the valve closed
during diastole.

Thereafter, we aim to assess the ability of the model to characterize pathological valves. To model the calcific aortic
stenosis, we restrict the maximum opening angle of the diseased cusps to θ ⋆max = 59 ° (to mimic the narrowing), see Fig. 17.
That corresponds to Ξ ∈ [0, 0.65]. The prescribed left ventricular pressure and the computed aortic pressure tracings
reveal an elevated transvalvular pressure gradient, see the shaded blue area in Fig. 17. In addition, the peak instantaneous
pressure gradient is almost about 74 998 dyn/cm2

∈ [33 325, 79 980] dyn/cm2, characterizing consequently a moderate
aortic stenosis. The diastolic and systolic pressures are about 4.49 × 104 dyn/cm2 and 8.99 × 104 dyn/cm2, respectively.
The aortic pulse pressure is about 4.5 × 104 dyn/cm2 and is larger than the one corresponding to the healthy valve. Some
snapshots showing the fluid dynamics during the systole when the stenotic valve is fully open are provided in Fig. 17. The
effect of the stenosis on the jet profile across the valve is remarkable and the maximum flow rate is now about 431.7 cm3/s.
Since the narrowed valve results in an increase of the fluid velocity through the valve, the assessment of the severity of
the stenosis can also be diagnosed by the aortic velocity [54]. Numerically, the maximum jet is characterized by a maximal
velocity almost equal to 350 cm/s. Streamlines in Fig. 17 show that the fluid exhibits a more complex three-dimensional
pattern compared to the healthy case.
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Fig. 17. Example 3. Stenotic aortic valve during systole. Left-Top: Volume-rendered blood flow velocity magnitude. Left-Bottom: Streamlines showing
complex flow pattern. Right: Temporal evolution of hemodynamical quantities when the fully periodic regime is established. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Example 4. Tuned parameters for the Windkessel model and averaged/maximal computed flow rates over the eighth heart cycle at the outlets of the
computational domain.

Outlet Rp


dyn s/cm5


Rd


dyn s/cm5


C

cm5/dyn


Mean fluxes (cm3/s) Maximal fluxes (cm3/s)

Brachiocephalic trunk 412.70 9179.32 2.6 × 10−4 8.79 69.09
Left common carotid artery 648.40 90335.80 1.05 × 10−4 5.03 35.21
Left subclavian artery 556.10 62100.00 3.12 × 10−4 6.96 47.06
Descending thoracic aorta 133.54 1445.70 1.08 × 10−3 59.62 258.50

4.4. Example 4: three-dimensional fluid dynamics in the full aorta and sinus of Valsalva

This test case concerns the simulation of blood flow in the aorta and sinus of Valsalva. Some particular points labelled
respectively byA, B, C andDare highlighted on the surface of the aorta, see Fig. 18. Twonumerical experiments are performed
considering healthy and stenotic valves, respectively. In the stenotic case, only one leaflet is assumed diseasedwhile the two
other leaflets behave healthy. The point B in Fig. 18 is placed on the sinotubular junction and is faced by the diseased leaflet
in the second experiment. From a medical viewpoint, this configuration is possible since the calcification can affect the
leaflets in different manners [6]. That also shows the flexibility of the present model to consider less usual configurations. A
complex flow dynamics is expected due to the non-planarity and the curvature of the aorta, the movement of the leaflets,
and the non-symmetric configuration of the leaflets and the sinuses.

The nomenclature used for the geometry and the different outlets is provided in Fig. 18. The outer boundaries include
the descending thoracic aorta and the three upper branch vessels: the brachiocephalic trunk, the left common carotid artery
and the left subclavian artery. The numerical test is set as follows: a time-varying left ventricular pressure is prescribed
on the inlet, while the parameters of the three-element Windkessel model are tuned such that physiologically meaningful
pressure waveforms are set on the outer boundaries. The tuned parameters are depicted in Table 3. In the healthy case,
the averaged and maximal fluxes at each outlets are also summarized in Table 3. We particularly observe that about 63%
of blood travelling across the healthy aortic valve is ejected through the descending thoracic aorta during systole. The
prescribed inner pressure and the computed pressure waveforms on the remaining boundaries are displayed in Fig. 18.
The time evolution of the computed flow rates, the opening angle of the healthy valve and the averaged pressure computed
on the sinotubular junction are also depicted.

Let the acronyms ES, PS, LS andMD stand for early systole, peak systole, late systole andmid-diastole, respectively.When
the periodic regime is established, the distribution of AWSS, OSI and WSS at PS, LS and MD are depicted in Fig. 20. Results
show that high values of the WSS are observed in the aortic arch. That comes from the jet created during systole and the
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Fig. 18. Example 4. Fluid dynamics in the full aorta and SV. Nomenclature and computed pressure and flow rates at different boundaries.

reversal flow occurring in the left subclavian artery during diastole. In addition, high WSS is reported in the upper branch
vessels especially at PS andMDwhere high flow is ejected through these arteries.We also see that theWSS in the descending
aorta is important especially in the stenotic case where blood becomes more strongly ejected. Notice that a big area in the
ascending aorta and SV becomes also subjected to a high sustained WSS in the stenotic case during the systole.

This is due to the large velocity gradient which is mainly created during the acceleration phase of the systole. Since
the high jet is oriented toward the region A, the tracing of the WSS time history in this location indicates that the WSS is
enhanced by almost a factor of 40 during some periods of the heart cycle in the diseased case.

The AWSS distribution obviously reveals that the stenotic case is subject to larger values of WSS in the areas outlined
above. Some snapshots of the streamlines are provided in Fig. 19. Regarding the OSI pattern, Fig. 20 shows small values,
almost zero, particularly in the descending aorta because of the positive outflow observed in this branch in both systole and
diastole. Since the upper branch arteries experienced high retrograde flow during diastole, the OSI is close to 0.5. Moreover,
high values of OSI are observed in the ascending aorta since complex flow recirculations hold in this region during diastole.
Helical flow pattern is clearly observed in Fig. 19 at MD.

4.5. Example 5: potential flow stagnation after transcatheter aortic valve implantation

We consider the same setup described in Example (4.2) (2D case) and Example (4.2) (3D case).We thereafter undertook a
numerical investigation to assess the implications of TAVI on the fluid dynamics. As an approximation, the heavily calcified
cusps are assumed fully rigid in the open position, yielding the no slip condition u = 0 for the fluid on the leaflets.
Although the calcified leaflets are usually remodeled and their shapes do not look like the healthy shapes, we assume in
this preliminary work that leaflets remain thin. We investigate the flow dynamics with respect to the area of the calcified
surface. Indeed,we examine the hemodynamical repercussion in the SVwith respect to the areaA of the calcified cusp (A = 0
simply corresponds to the case of a healthy valve). A noticeable consequence is that after TAVI, the presence of both old and
implanted valves causes a strong effect on blood flow patterns, see Fig. 21. In fact, the blood velocity decreases significantly
in the lower parts of the sinuses after TAVI, creating consequently low flow zones. Such dead zones are characterized by
low shear rate magnitude γ̇ wherein blood flow stagnates and may coagulate in a threshold-like manner [55]. Since the
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Fig. 19. Example 4. Top row: Healthy aortic valve. Bottom row: Stenotic aortic valve. Right: Streamlines. Left: Time history ofWSSmagnitude at particular
positions. The legends of the continuous and discontinuous lines are depicted in the right and left panels, respectively.

shear rate governs the advection phenomena near the walls [56], it represents a better indicator of potential thrombosis
than either velocity or flux. To characterize the stagnation, we measure the ‘‘stagnation volume’’ (stagnation area in 2D)
that represents the volume (area in 2D) of the zone where γ̇ is small enough to favor stagnation (below a threshold value
5 s−1). Snapshots in Fig. 21 show that the stagnant regions (white-colored) of low flow u 6 0.1 cm/s and low shear rate
γ̇ 6 5 s−1 are created after TAVI in the bottom of the sinuses. However, such dead zones are not observed in the healthy
case.

Our current intuitive understanding is as follows. In the healthy case, the leaflets quickly open under the action of the
pressure gradient and blood particles are strongly pushed in the sinuses. A highly pulsatile jet is propelled from the left
ventricle during systole and is divided into different portions passing either through the aorta or the SV. The small vortices
formed at the tips of the cusps ensure a continuous recirculation of blood in the sinuses during systole. Being dictated by the
flow reversal at late systole, the downstream vortices issuing from the top of the leaflets become stronger and allow to push
the open cusps toward a quick closure [8], see Fig. 16. The vortices observed in the sinuses play subsequently an essential
role to prevent stagnation areas in the sinuses during diastole. The structure of the vortices is drasticallymodified after TAVI.
During the opening phase, the diseased leaflets behave as an obstruction preventing the fluid to be correctly pushed in the
sinuses. The only zones allowing fluid penetration in the sinuses are situated around the tips of the cusps. The bigger the
surface of the calcified cusps is, the more difficult the fluid penetration becomes. Accordingly, the presence of the diseased
cusps prevents the complete fluid recirculation and reduces γ̇ in the sinuses.

We have performed a systematic analysis on the occurrence of stagnation zones with respect to the area of the calcified
leaflets. The computational results reported in Fig. 22 show that, by increasing A (L in 2D), dead zones with low shear rates
below 5 s−1 are created above a threshold value. An increased thromboembolic risk is subsequently expected as the size of
the calcification increases. Therefore, it seems mandatory to eliminate the localized stagnant zones which are inaccessible
to blood after TAVI. However, it is interesting to note that, at a fixed calcified leaflet area, the low shear stress at dead zones
increases gradually if the prescribed cardiac output, referred to as CO, increases, see Fig. 22 (right). Our hypothesis is as
follows. Under an increased blood volume ejected by the left ventricle, due for example to exercise or in response to certain
classes of drugs, blood supply to the sinuses increases and leads to the reduction of stagnation zones.

5. Concluding remarks

This article concerns the numerical modeling of the fluid dynamics in full aorta in the presence of the aortic. To this aim,
we have improved the RIS methodology developed in Laadhari et al. [28]. In summary, the main contributions of this work
reside in that: (i) The simulations are performed in the full aorta allowing the three-dimensional description of the flow near
the valve at affordable cost compared to the full FSI models; (ii) The coupling between the flow and valve dynamics relies
on a Lagrange multiplier rather than a penalty term, for which the tuning is often problematic and may induce instabilities
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(a) WSS-PS. (b) WSS-LS. (c) WSS-MD. (d) AWSS.

(e) OSI. (f) WSS-PS. (g) WSS-LS. (h) WSS-MD.

(i) AWSS. (j) OSI.

Fig. 20. Example 4. Snapshots showing the WSS, AWSS and OSI in the cases of healthy (top row) and stenotic (bottom row) aortic valves.

especially when flow and geometry become complex; (iii) A banded level set variant helps to assemble the surface integral
terms only in a surrounding domain of the valve, allowing thereby to address the singularity of the linear system and
featuring comparable computational cost with respect to the RIS method; (iv) Different numerical strategies are proposed,
and the solution method is based on the numerical investigation of the different algorithmic choices. That guarantees
sufficient stability when the geometry and flow become complex; (v) Numerical examples in 2D and 3D for healthy and
pathological valves allow to address in detail the relevance of the mathematical model in terms of physiological meaning.
Comparisons with clinical measurements and numerical results in a patient-specific case show good agreement; and
(vi) The flexibility of the model allows to study the hemodynamics in the SV after TAVI, showing that blood may be subject
to stagnation in the sinuses and resulting in potential thromboembolic complications. Although we considered idealized
shapes for the heavily calcified leaflets, this study can serve as a starting point to better understand the stagnation extent in
patient-specific cases. Systematic clinical studies would be necessary to accept or reject the present concern. If confirmed,
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Fig. 21. Example 5. Flow features and stagnation areas. Velocity magnitude and shear rate in MD (left) and PS (right). Top: healthy valve. Bottom: after
TAVI. The white color corresponds to u ∈ [0, 0.1] cm/s and γ̇ ∈ [0, 5] s−1 .

Fig. 22. Example 5. Change in the stagnation zone after TAVI with respect to the calcification area and the cardiac output.

thiswarning canhavemajor implications on the evaluation of interventional outcomes after TAVI. Appropriate anticoagulant
medication may be advisable to overcome this thromboembolic risk.

However, several limitations of our model exist, mainly in terms of physiological relevance. We clarify that our primary
intention was to introduce a relatively simple framework that could be progressively enriched. In this regard, we list some
of the straightforward extensions. We are currently developing a fully Eulerian fluid–membrane interaction method for
the simulation of the mechanical properties of extremely thin leaflets. We are also investigating the model for flexible
leaflets developed in [57]. In addition, further improvements need to model the aortic wall compliance to account for its
effect on the flow pattern mainly near the valve. We also foresee the applicability of the proposed framework to study the
hemodynamics after TAVI in more realistic patient-specific cases. Finally, the development of a model including a complete
set of valves within the full heart represents our ultimate goal. A huge obstacle towards this aim consists in elaborating
suitable approaches to include the papillary muscles and the chordae tendinae.
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