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SUMMARY

A new approach based on the use of the Newton and level set methods allows to follow the motion of inter-
faces with surface tension immersed in an incompressible Newtonian fluid. Our method features the use
of a high-order fully implicit time integration scheme that circumvents the stability issues related to the
explicit discretization of the capillary force when capillary effects dominate. A strategy based on a consis-
tent Newton–Raphson linearization is introduced, and performances are enhanced by using an exact Newton
variant that guarantees a third-order convergence behavior without requiring second-order derivatives. The
problem is approximated by mixed finite elements, while the anisotropic adaptive mesh refinements enable us
to increase the computational accuracy. Numerical investigations of the convergence properties and compar-
isons with benchmark results provide evidence regarding the efficacy of the methodology. The robustness of
the method is tested with respect to the standard explicit method, and stability is maintained for significantly
larger time steps compared with those allowed by the stability condition. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

This framework is concerned with the numerical modeling of the dynamics of interfacial flows with
surface tension in a surrounding incompressible Newtonian flow. The influence of the surface tension
of the interface is significant in several scientific, engineering, and geophysical applications such
as inkjet printing [1], atomization processes [2], and gases transfer between the atmosphere and
seas [3].

Over the past decade, a multitude of computational strategies have been dedicated to this problem
[4–9]. Typically, they can be roughly sorted according to the way they track the interface motion. We
can distinguish between the interface tracking approaches and the interface capturing approaches.

Regarding the first group, a moving mesh explicitly fits the fluid interface and follows its move-
ment. This Lagrangian representation results in separate conservation equations for the fluid inside
and outside the interface, while the interfacial condition allows to set appropriate boundary condi-
tions; for a detailed description of such an arbitrary Lagrangian Eulerian (ALE) formulation, see, for
example, [10,11]. The boundary integral method, which expresses the flow in terms of distributions
of singularities over the interfaces, can also be classified in this category [12].
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In the second group, the flow in each fluid domain and on the interface is considered as a sin-
gle continuum model, inherently taking into account the interfacial condition. In such an Eulerian
description, the movement of the interface is followed in an implicit manner. An additional equation
describing the transport of the interface is then considered. Several methods are used in the pub-
lished literature such as the level set method [13, 14], the volume-of-fluid (VOF) method [15–17],
and the phase field method [18]. Remark that there exist other hybrid methods between the interface
tracking and interface capturing methods (e.g., [19, 20]).

While the Lagrangian approaches feature the sharpness of the interface representation, they may
exhibit problems related for instance to the large displacement of the interface, mesh distortion, and
changes of topology such as interface merging or breaking. The Eulerian approaches feature ease
of implementation. They avoid problems related to the mesh distortion and naturally handle the
topological changes of the interface. Although an additional transport equation of the interface needs
to be solved, the corresponding computational cost is in essentially all cases insignificant compared
with the cost of solving the Navier–Stokes equations.

In an Eulerian framework, a fixed mesh is usually used along the simulation period. Recently, a few
mesh adaptation techniques have been employed together with Eulerian methods. In [4, 21], a VOF
method combined with an adaptive and structured quad/octree mesh refinement technique is used for
the numerical simulations of droplets, showing that the mesh refinement enables more computational
accuracy. In [22], adapted unstructured meshes are employed together with the immersed boundary
method and the level set method, resulting in a more accurate flow description especially near the
wall. In [23], an anisotropic mesh adaptation technique is presented and allows to adapt a general
unstructured mesh in the vicinity of the interface. Numerical results in the cases of LeVeque’s test
and the mean curvature motion depict that the rate of convergence of the method is improved by the
mesh adaptation.

The surface tension is a major component in free surface flows, and numerical coupling of hydro-
dynamical and capillary effects remains challenging. Indeed, the capillary force lies at the interface
and is consequently singular therein. A crucial difficulty is due to the numerical discretization of the
surface tension term. For such a problem, the capillary number Ca is used to compare the relative
effect of viscous forces with the surface tension acting across the interface between immiscible flu-
ids. Most existing approaches have used explicit decoupling strategies that are conditionally stable,
yielding a severe capillary stability condition for the temporal resolution of type Δt < C

√
Cah3∕2

especially for small capillary numbers (i.e., high surface tension) [24], where h stands for the mesh
size and C is a constant value. For small velocities, the time step limit is rather given by the vis-
cous time step limit, which corresponds to the characteristic diffusion time. For such a slow flow,
this time step limitation of type Δt < C𝜈h2, where C𝜈 is a constant depending on the kinematic vis-
cosities (ratio of the dynamic viscosity to the density) of both inner and outer fluids, becomes more
stringent than the previous convective time step restriction (e.g., [7, 25]). Therefore, exceeding this
time step restriction may lead to an unphysical evolution of the interface or divergence of the numer-
ical algorithm. Regarding the time discretization, almost exclusively first-order schemes have been
used for problems of interfaces with capillary force, whereas only few works have used second-order
schemes such as in [26, 27] or third-order schemes for differential-algebraic formulation of the ALE
approach [28]. However, no works that used an adaptive time scheme of second order is known to us.

In [29], it was suggested that an implicit treatment of the surface tension would mitigate the time
step restriction significantly. Although limited works have been devoted to the time integration strate-
gies, some works introduced the semi-implicit schemes in order to lift the time step restrictions.
Following the seminal work of Dziuk [30], Hysing described a semi-implicit method for the treat-
ment of the surface tension term by introducing an additional implicit term that represents a diffusion
of velocities tangential to the interface and induced by the surface tension [31]. The method was
implemented in a finite element framework, and results show that the method remains stable up to
almost 80 times the capillary time step constraint. In [32], the previous method was implemented in
a VOF-based finite volume framework, showing that this time step restriction can be exceeded by at
least a factor of five without destabilizing the numerical solution. In [33], a fully coupled numerical
framework on arbitrary meshes in a finite volume framework is presented, including a novel method
to evaluate the curvature from volume fractions. More stability is observed for larger density ratios.
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In the present paper, we intend to give a new computational way to solve the time-dependent
coupled Navier–Stokes and level set equations involving interfacial flows with surface tension. The
proposed method can be placed in the interface capturing group, as we use a fully Eulerian descrip-
tion of the interface in which the interface condition is incorporated by the level set method. A
second-order scheme with adaptive time step sizes is introduced. We describe two fully implicit
and monolithic approaches where we attempt to solve the entire coupled system using Newton-type
strategies. To the knowledge of the authors, the Newton–Raphson linearization of this kind of prob-
lems is a novel concept. Our approach avoids the usual stability issues and time step limitations
characterizing explicit strategies. Indeed, we achieve that stability is maintained for considerably
larger time steps than those predicted by the explicit surface tension time step constraint [24]. Two
variants of the exact Newton method featuring second-order and third-order convergence behav-
iors, respectively, are described. The quantitative comparison of their performances is presented
subsequently. Our method is entirely based on a finite element discretization on arbitrary unstruc-
tured meshes, whereas an anisotropic metric-based mesh adaptation procedure allows to refine and
enhance the computational accuracy on the interface and in zones with complex flow patterns.
The present fully coupled implicit strategy is used to study and compare the maximum tempo-
ral resolution with respect to an explicit method, showing that the capillary time step constraint
can be significantly exceeded. We numerically validate our framework in the context of the ris-
ing bubble benchmark presented in [34]. The method is further tested in the case of the oscillating
two-dimensional bubble and in a simple three-dimensional case.

We have arranged the remainder of this paper as follows. Section 2 outlines the mathematical
model, including the level set formulation and the Navier–Stokes equations governing the fluid
dynamics. The derivation of the tangent problem and the linearization procedure are presented in
Section 3, where we also present two alternative Newton strategies. We also provide details about
the numerical discretization and the mesh adaptation procedure. In Section 4, various numerical sim-
ulations are performed to illustrate the efficiency and robustness of the proposed method. We close
with some remarks and current extensions in Section 5.

2. GOVERNING EQUATIONS

Let T > 0 represent the period of the experiment. For any time t ∈ (0, T), let Ω(t) ⊂ Rd, d = 2, 3
denote the internal domain having a Lipschitz continuous boundary Γ(t) = 𝜕Ω(t). The interface Γ(t)
is embedded in a larger computational domain Λ such that Γ(t) ∩ 𝜕Λ = ∅, for all t ∈ (0, T). Let
n and 𝝂 denote the unit outer normal vector on the interface Γ(t) and the external boundary 𝜕Λ,
respectively. Let t be a unit tangent vector on the boundary 𝜕Λ. We introduce the mean curvature
H = div n as the sum of the principle curvatures on Γ(t).

From now, the explicit dependence of Ω and Γ from t will be understood.

2.1. Level set formulation

An Eulerian framework is adopted to follow the interfacial motion in such a way that Γ represents an
isosurface 𝜑 = 0 of a level set function 𝜑. A time-dependent partial differential equation, initialized
by a signed distance function 𝜑(t = 0) to Γ(0), describes its motion

𝜕t𝜑 + u · 𝛁𝜑 = 0 in (0,T) × Λ.

Geometrical quantities, for example, n and H, are encoded in terms of 𝜑 and are consequently
extended to the entire domain Λ. It is well known that the signed distance property is lost after the
advection of 𝜑, giving sometimes rise to difficult scenarios where |𝛁𝜑| becomes very large or very
small near Γ and deteriorates the accuracy of computations over Γ. To reestablish the signed distance
property, a redistancing problem is commonly solved to initialize the level set function as a signed
distance function [35]. However, it has been revealed in the literature that the zero level set may
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be unphysically shifted during the redistancing process, leading to substantial errors [36]. To alle-
viate this difficulty, several approaches were developed based on some mesh refinement techniques
[37, 38] or by introducing an explicit forcing term to fix the isosurface 0 during the redistancing pro-
cess [39–41]. In the present work, we use the redistancing approach presented in [42, 43] where a
Lagrange multiplier allows to enforce a zero displacement on the interface Γ. Let 𝜏 be a pseudo-time
variable. At every time t ∈ (0, T), we initialize 𝜙(𝜏 = 0, ·; t) = 𝜑(t, ·), and we solve until convergence
the problem:

𝜕𝜏𝜙(𝜏, ·; t) + s𝜀(𝜑(t, ·)) |𝛁𝜙(𝜏, ·; t)| = s𝜀 (𝜑(t, ·)) + 𝜆(𝜏, ·; t), in (0,+∞) × Λ,

where s𝜀(·) is a regularized sign function that helps us impose a zero displacement on Γ, while 𝜆

is a forcing term that prevents the unphysical shifting of Γ during the redistancing process. A full
description of the approach is provided in [43]. We thereafter update 𝜑(t, ·) with 𝜙(∞, ·; t).

Let 𝜀 be a regularization parameter proportional to the local mesh size h. The sharp Heaviside
function H, the Dirac measure 𝛿Γ, and the sign function s are regularized within a banded strip of
width 2𝜀 such that

H𝜀(𝜑) =
1
2

(
1 + min(max(𝜑, 0), 𝜀)

𝜀
+ 1

𝜋
sin

(
𝜋 min(max(𝜑, 0), 𝜀)

𝜀

))
,

𝛿𝜀(𝜑) =
dH𝜀

d𝜑
(𝜑) and s𝜀(𝜑) = 2H𝜀(𝜑) − 1.

In such an Eulerian-based framework, all integrals over Γ are transformed into integrals over Λ. For
any given function 𝜂(·) defined on Γ, let �̃�(·) be an extension over the domain Λ. We have

∫Γ
𝜂(x) ds = ∫Λ

|∇𝜑| 𝛿Γ �̃�(x) dx ≈ ∫Λ
|∇𝜑| 𝛿𝜀 (𝜑) �̃�(x) dx. (2.1)

2.2. Statement of the nonlinear capillary problem

To model the surface tension effects in the case of immiscible and incompressible fluids, we consider
the instationary Navier–Stokes equations with a free capillary boundary. We assume constant fluid
density 𝜌i/o and viscosity 𝜇i/o in both sides of the interface Γ, where the subscripts ‘i’ and ‘o’ stand
for the internal and external domains, respectively. The regularized global viscosity and density
functions are given by

𝜇𝜀(𝜑) = 𝜇i + (𝜇o − 𝜇i)H𝜀(𝜑) and 𝜌𝜀(𝜑) = 𝜌i + (𝜌o − 𝜌i)H𝜀(𝜑).

Let 𝝈(u,p,𝜑) = 2𝜇(𝜑)D(u) − pId and D(u) = (∇u + ∇uT )/2 be the fluid Cauchy stress tensor and the
strain tensor, respectively. Let

[
.
]+
− denote the jump across Γ and 𝛾 be the surface tension coefficient.

The capillary problem is characterized by the continuity of the velocity across the interface, while
the stress discontinuity across the interface is calibrated according to the membrane tension. We also
introduce an external body force g.

We first present the non-dimensionalized problem. Let us introduce the Reynolds number
Re = 𝜌oUgD/𝜇o, where D is the diameter of the interface at t = 0 and Ug =

√
D|g| represents the

velocity induced by the external force. We also consider the Eötvös number Eo = 𝜌oU2
gD∕𝛾 , which

compares the gravitational forces with the surface tension effects. The capillary number is given by
the ratio Ca = Eo/Re. Let us denote by 𝜇⋆ = 𝜇i/𝜇o and 𝜌⋆ = 𝜌i/𝜌o the viscosity ratio and the density
ratio between both sides of Γ, respectively. From now, the non-dimensionalized counterpart of the
external force is also denoted g and all quantities and domains are non-dimensionalized. In addition,
the same notations will be used for ease of exposition.

Let div(·) and div(·) denote the divergence of tensor fields and vector fields, respectively. The
non-dimensionalized problem reads:
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P ∶ find the velocity u = u(t, x) and pressure p = p(t, x) such that

Re 𝜌(𝜑)
(
𝜕tu + u.∇u

)
− div

(
2𝜇(𝜑)D(u)

)
+ 𝛁 p = Re 𝜌(𝜑)g, in (0,T) × Λ, (2.2)

div u = 0, in (0,T) × Λ, (2.3)

[
u
]+
− = 0 and

[
𝝈n

]+
− = 1

Ca
Hn, on (0,T) × Γ. (2.4)

3. NUMERICAL APPROXIMATION AND IMPLEMENTATION DETAILS

3.1. Semi-discretization in time

Let us divide [0, T] into N subintervals [tn, tn + 1), n = 0,… , N − 1 of variable step size Δtn. We
consider an adaptive time stepping scheme to properly ensure the convergence of the Newton subit-
erations. Indeed, the problem is solved again with a decreased Δtn by a factor 1/2 if the Newton
loop does not converge after six iterations, whereas we increase Δtn + 1 for the next time step with
an amplification factor 1.2 if the convergence holds. For any n ⩾ 1, the unknowns un, pn, and 𝜑n

at time step n are computed by induction. We use the adapted backward differentiation scheme of
second order, referred to as BDF2, to approximate the time derivative terms [44]. The scheme is
bootstrapped by the initial conditions u − 1 = u0 = u(0) and 𝜑 − 1 = 𝜑0 = 𝜑(0), where u − 1 and 𝜑 − 1

only represent suitable notations. Let us introduce the ratio 𝜗n = Δtn/Δtn − 1.
Concerning the boundary conditions for the velocity, let ΣD ∈ 𝜕Λ be the subset on which essen-

tial boundary conditions are assigned, while free stresses are imposed on the remaining boundary
𝜕Λ⧵ΣD. We introduce the functional spaces:

V(ub) =
{

v ∈
(
H1 (Λ)

)d ∶ v = ub on ΣD

}
and Q =

{
q ∈ L2 (Λ) ∶ ∫Ω

q dx = 0

}
.

Let Σ− = {x ∈ 𝜕Λ : u · 𝝂(x) < 0} represent the upstream boundary. We introduce the space of admis-
sible level set functions:

X(𝜑b) =
{
𝜓 ∈ W1,∞ (Λ) ∩ H1 (Λ) ∶ 𝜓 = 𝜑b on Σ−

}
.

At every tn, 𝜑b = 𝜑n − 1 is the steady-state solution of the redistancing problem and approximates a
signed distance function; it allows to set the boundary condition for 𝜑n on Σ −. Considering the adap-
tive advancing formula of the BDF2 [44], the semi-discrete approximation in time of the capillary
problem P reads:

Pn ∶ find (un, pn, 𝜑n) ∈ V(ub) ×Q × X(𝜑n−1) such that

Re∫Λ
𝜌(𝜑n)

(1 + 2𝜗n)un − (1 + 𝜗n)2un−1 + 𝜗2
nun−2

(1 + 𝜗n) Δtn
· v + Re∫Λ

𝜌(𝜑n)
(
un · 𝛁un

)
· v

+ ∫Λ
2𝜇 (𝜑n) D (un) ∶ D(v) − ∫Λ

pndiv v − 1
Ca∫Γn

Hn
𝛁𝜑n|𝛁𝜑n| · v − Re∫Λ

𝜌(𝜑n)g · v = 0,
(3.1)

∫Λ
q div un = 0, (3.2)

∫Λ

(1 + 2𝜗n)𝜑n − (1 + 𝜗n)2𝜑n−1 + 𝜗2
n𝜑n−2

(1 + 𝜗n) Δtn
𝜓 + ∫Λ

(un · ∇𝜑n)𝜓 = 0, (3.3)

for all test functions v ∈ V(0), q ∈ Q, and 𝜓 ∈ X (0).
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Following the approach described in [43, Section 3.3.2], we additionally consider an a posteriori
mass correction term that enforces at every time step the condition |Ωn| = |Ω|exact.

Regarding the redistancing problem, we solve it at every time step after solving the system
(3.1–3.3). At the numerical level, we use a first-order combined characteristics and finite difference
discretization method to approximate the advection term. In addition, we use the Gauss–Lobatto
quadrature formula that guarantees further stability for the characteristics method [45]. Further
details about the numerical scheme and the method of characteristics are available in [43, 46–48].

3.2. Consistent linearization and Newton–Raphson method

For a given functional F (𝜑(x)), let DF(𝜑)[𝛿𝜑] denote the Gâteaux derivative of F at 𝜑 along the
direction 𝛿𝜑. Let 𝛁s = (Id − n ⊗ n)𝛁 = 𝛁 − n·(n.𝛁) denote the surface gradient operator, and
⊗ represent the tensor product between vectors.

We first provide some useful directional derivatives in the direction of the level set increment 𝛿𝜑:

D𝛁𝜑[𝛿𝜑]=𝛁 𝛿𝜑, D|𝛁𝜑|[𝛿𝜑]= D
√
𝛁𝜑 · 𝛁𝜑[𝛿𝜑]=𝛁 𝛿𝜑 · n, D

1|𝛁𝜑| [𝛿𝜑] = −𝛁 𝛿𝜑 · 𝛁𝜑|𝛁𝜑|3 ,
Dn[𝛿𝜑]= 𝛁 𝛿𝜑|𝛁𝜑|− (𝛁𝜑 · 𝛁 𝛿𝜑)𝛁𝜑|𝛁𝜑|3 = 𝛁 𝛿𝜑|𝛁𝜑|−(n · 𝛁 𝛿𝜑)n|𝛁𝜑| = 𝛁s𝛿𝜑|𝛁𝜑| , DH[𝛿𝜑]=div

(
𝛁s𝛿𝜑|𝛁𝜑|

)
,

D𝜇𝜀(𝜑)[𝛿𝜑] = (1 − 𝜇⋆)𝛿𝜀(𝜑)𝛿𝜑 and D𝜌𝜀(𝜑)[𝛿𝜑] = (1 − 𝜌⋆)𝛿𝜀(𝜑)𝛿𝜑.

Let us introduce the mixed variable Ψ ≡ H and proceed with the computation of Ψ in the weak sense
to decrease the derivation order. We assume that Γ never touches the external boundary 𝜕Λ. Remark
that the evaluation of Ψ is only needed in a surrounding of the interface Γ. Consequently, an accurate
computation of Ψ is only requested near Γ. By using the Green transformation, the boundary term
vanishes, and we introduce the residual RΨ as follows:

⟨RΨ (Ψ, 𝜑) , 𝜉⟩H−1,H1
0
≡ ∫Λ

Ψ𝜉 + ∫Λ

𝛁𝜑|𝛁𝜑| · 𝛁 𝜉 = 0, ∀𝜉 ∈ H1
0(Λ), (3.4)

where the space H − 1(Λ) represents the dual space of H1
0(Λ). After the linearization with respect to

the variables 𝜑 and Ψ, we obtain the following equation coupling the increments 𝛿Ψ and 𝛿𝜑:

∫Λ
𝛿Ψ 𝜉 + ∫Λ

𝛁s𝛿𝜑|𝛁𝜑| · 𝛁 𝜉 = −⟨RΨ (Ψ, 𝜑) , 𝜉⟩H−1,H1
0
, ∀𝜉 ∈ H1

0(Λ).

Let us introduce the following weighted multilinear forms:

a(u, v;w) = ∫Λ
2w D(u) ∶ D(v), b(u, q) = −∫Λ

q ö u, d(𝜑, v;w) = ∫Λ
w𝛁𝜑 · v,

c(u, v;w,w) = ∫Λ
w
(
(u · 𝛁)w + (w · 𝛁) u

)
· v, e(𝜑,𝜓 ;w) = ∫Λ

w 𝜑𝜓,

f (𝜑,𝜓 ;T) = ∫Λ
(T𝛁𝜑) · 𝛁𝜓, g(𝜑, v;w) = ∫Λ

𝜑v · w, m(u, v;w) = ∫Λ
w u · v,

i(𝜑,𝜓 ;w) = ∫Λ
𝜓w · 𝛁𝜑 and h(𝜑, v;w,w) = ∫Λ

2𝜑w D(v) ∶ D(w),

defined for all u, v,w ∈
(
H1(Λ)

)d
; q ∈ L2(Λ); w ∈ L∞(Λ); 𝜑, 𝜓 ∈ H1(Λ); and T ∈ (L∞(Λ))d×d.

The mixed problem is given by the system (3.1–3.4). Let Ξn ≡ (un, pn, Ψn, 𝜑n)T and R(Ξn) be
the corresponding vector of unknowns and the global residual, respectively. The Newton–Raphson
method reduces the nonlinear problem Pn into a sequence of linear subproblems [49]. Thereafter,
we drop the subscript n whenever it is contextually clear. After linearization with respect to Ξn, the
tangent system reads:
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Given Ξk, find 𝛿Ξk =
(
𝛿uk, 𝛿pk, 𝛿Ψk, 𝛿𝜑k

)
∈ V(ub) ×Q × H1(Λ) × X(𝜑b) such that

Re(1 + 2𝜗n)
(1 + 𝜗n)Δtn

m
(
𝛿uk, v; 𝜌𝜀(𝜑k)

)
+ Re c

(
𝛿uk, v; 𝜌𝜀(𝜑k),uk

)
+ a

(
𝛿uk, v;𝜇𝜀

(
𝜑k

) )
+ Re

(
1 − 𝜌⋆

)
g

(
𝛿𝜑k, v; 𝛿𝜀

(
𝜑k

)( (1 + 2𝜗n)uk − (1 + 𝜗n)2un−1 + 𝜗2
nun−2

(1 + 𝜗n)Δtn
+ uk · 𝛁uk

))

− 1
Ca

g
(
𝛿Ψk, v; 𝛿𝜀

(
𝜑k

)
𝛁𝜑k

)
− 1

Ca
g
(
𝛿𝜑k, v; Ψk𝛿′𝜀

(
𝜑k

)
𝛁𝜑k

)
− 1

Ca
d
(
𝛿𝜑k, v; Ψk𝛿𝜀

(
𝜑k

) )
+
(
1 − 𝜇⋆

)
h
(
𝛿𝜑k, v; 𝛿𝜀

(
𝜑k

)
,uk

)
− Re

(
1 − 𝜌⋆

)
g
(
𝛿𝜑k, v; 𝛿𝜀

(
𝜑k

)
g
)

+ b
(

v, 𝛿pk
)
= −⟨RΞ

(
ΞT ,k

)
, v⟩V(0)′,V(0),

(3.5)

b
(
𝛿uk, q

)
= −⟨Rp

(
uk
)
, q⟩Q′,Q, (3.6)

e
(
𝛿Ψk, 𝜉; 1

)
+ f

(
𝛿𝜑k, 𝜉; |||𝛁𝜑k|||−1 (

Id − nk ⊗ nk
))

= −⟨RΨ
(
Ψk, 𝜑k

)
, 𝜉⟩H−1,H1

0
, (3.7)

e

(
𝛿𝜑k, 𝜓 ; 1 + 2𝜗n

(1 + 𝜗n)Δtn

)
+ i

(
𝛿𝜑k, 𝜓 ;uk

)
+ g

(
𝜓, 𝛿uk;𝛁𝜑k

)
= −⟨R𝜑

(
𝜑k,uk

)
, 𝜓⟩X(0)′,X(0), (3.8)

for all (v, q, 𝜉, 𝜓) ∈ V(0) ×Q × H1
0(Λ) × X(0), where the corresponding residuals express as

⟨RΞ
(
ΞT ,k

)
, v⟩V(0)′,V(0) = a

(
uk, v;𝜇𝜀

(
𝜑k

) )
+ b

(
v, pk

)
− 1

Ca
d
(
𝜑k, v; Ψk𝛿𝜀

(
𝜑k

) )
+ Re

(1 + 𝜗n)Δtn
m
(
(1 + 2𝜗n)uk − (1 + 𝜗n)2un−1

+ 𝜗2
nun−2, v; 𝜌𝜀

(
𝜑k

))
+ Re

2
c
(

uk, v; 𝜌𝜀
(
𝜑k

)
,uk

)
− Re m

(
g, v; 𝜌𝜀

(
𝜑k

) )
,

⟨Rp
(
uk
)
, q⟩Q′,Q = b

(
uk, q

)
,

⟨R𝜑

(
𝜑k,uk

)
, 𝜓⟩X(0)′,X(0) = e

(
(1 + 2𝜗n)𝜑k − (1 + 𝜗n)2𝜑n−1 + 𝜗2

n𝜑n−2

(1 + 𝜗n)Δtn
, 𝜓 ; 1

)
+ d

(
𝜑k, uk;𝜓

)
,

⟨RΨ
(
Ψk, 𝜑k

)
, 𝜉⟩H−1,H1

0
= e

(
Ψk, 𝜉; 1

)
+ f

(
𝜑k, 𝜉; |||𝛁𝜑k|||−1

Id
)
.

Given the solutions at t < tn, we iteratively compute Ξk
n at tn by using two strategies that enable us

to compute the increments 𝛿Ξk
n =

(
𝛿uk

n, 𝛿pk
n, 𝛿Ψk

n, 𝛿𝜑
k
n

)
. For any subiteration k ⩾ 1, we consider the

following:

(i) Strategy I is the classical quadratically convergent Newton method, and it consists in solving

⟨DR
(
Ξk

n

) [
𝛿Ξk

n

]
, 𝝃⟩ = −⟨R (

Ξk
n

)
, 𝝃⟩,∀𝝃.

We explicitly update afterwards the solution as follows: Ξk+1
n = Ξk

n + 𝛿Ξk
n.

(ii) Strategy II is a formulation in the multidimensional case of the method introduced by Kou
et al. [50]. It features a third-order convergence behavior in some neighborhood of the solution

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
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without requiring the evaluation of the second derivatives of the residual. The increment is
computed at each Newton iteration in two steps as follows:

(1) Ξk+0.5
n = Ξk

n + 𝛿Ξk
n with ⟨DR

(
Ξk

n

) [
𝛿Ξk

n

]
, 𝝃⟩ = ⟨R (

Ξk
n

)
, 𝝃⟩,∀𝝃.

(2) Ξk+1
n = Ξk+0.5

n + 𝛿Ξk+0.5
n with ⟨DR

(
Ξk

n

) [
𝛿Ξk+0.5

n

]
, 𝝃⟩ = −⟨R (

Ξk+0.5
n

)
, 𝝃⟩,∀𝝃.

Observe that, for Strategy II, the minus sign appears in front of the residual only in the sec-
ond step. The efficiency index is an indicator commonly used to compare the Newton variants; it
measures the corresponding order of convergence per residual or Jacobian evaluation. However, we
notice that this index does not represent always the best way of comparison in the multidimensional
case, as it does not account for the differences in the computational cost of the Jacobian assembly,
Jacobian factorization, and residual evaluation. Strategy II requires two evaluations of the residual
and one assembly of the Jacobian, yielding an efficiency index of 3

√
3. This efficiency index is bet-

ter than the one of Strategy I given by
√

2 [50]. The Kou method is based on a modification of the
Werrakoon–Fernando method [51], and its efficiency compared with the main existing third-order
methods is demonstrated in [50] for several basic monodimensional test cases. A similar cubically
convergent method was subsequently developed in [52]. The latter strategy does not require the eval-
uation of the second derivative and needs one evaluation of the residual and two evaluations of the
Jacobian per iteration.

To compare the computational cost of both residuals and Jacobian’s assembly, we proceed with
the assembly of the linear system using a structured mesh having 75′600 triangles and 29′600 ver-
tices. The computational cost of the residual’s assembly is 20.7138 s, whereas the computational
cost of the Jacobian’s assembly is equal to 39.1561 s, and the cost of the Jacobian factorization
is 35.7054 s. Hence, the evaluation of the residual is significantly cheaper than the assembly and
factorization of the Jacobian matrix. It is more beneficial to consider a method that only needs to
assemble and factorize the Jacobian once at each Newton iteration. Consequently, we opt to use the
Kou method developed in [50] for the capillary problem among other cubically convergent method,
and we consider the aforementioned generalization of this method to the multidimensional case.

Furthermore, we use a second-order extrapolation of the solution at previous times to assign the
starting values of the velocity and level set at each Newton loop. For practical computations, the
stopping criterion is based on the evaluation of the global residual, and we set the Newton tolerance
to 10 − 9 in our computations.

3.3. Space discretization and banded level set approach

We consider a partition Th of Λ consisting of geometrically conforming open simplicial elements
K, that is, triangles for d = 2 and tetrahedra for d = 3, such that Λ = ∪

K∈Th

. Regarding the finite

dimensional spaces, we consider a Taylor–Hood finite element approximation for the discretization
of velocity and pressure (e.g., [53]), while we use the P2 Lagrange finite elements to approximate
the level set function 𝜑 and the mixed variable Ψ.

We now focus on the resolution of the Jacobian system (3.5–3.8) arising from the linearization
of (3.1–3.4) after time and space discretizations. The pressure is only computed up to an arbitrary
constant, and the global matrix of the linear system is then singular. To solve the discretized problem
using a direct method, we can use, for instance, the procedure that consists in adding a real Lagrange
multiplier that imposes a constant average pressure value [46], which corresponds to adding one line
in the global linear system. Otherwise, we can fix the pressure value on one degree of freedom before
solving the linear system.

The linear system corresponding to the discretized problem (3.5–3.8) has a sparse and block struc-
ture. We use the package Mumps§ for the factorization and as direct solver on distributed memory
architectures. This package provides a direct method using the multifrontal method that represents
a version of the Gaussian elimination for large sparse systems of equations with either symmetric or

§MUMPS – http://graal.ens&LWx02010;lyon.fr/MUMPS.
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Figure 1. Two-dimensional case. Sparsity pattern of the global matrix exported in the standard Matrix Market
format. Left: Equation (3.7) assembled in the entire Λ yields a matrix size = 288′4892. Right: Equation (3.7)

assembled in the banded domain B𝜀′ yields a matrix size = 223′3382.

unsymmetric matrices [54]. We refer to [54–57] for detailed descriptions of the methods and algo-
rithms used. For the tridimensional problem, iterative methods using for instance the preconditioned
conjugate gradient algorithm can also be used [45].

We thereafter give further insight into the structure of the matrix of the linear system corresponding
to (3.5–3.8), and we show how the size of the linear system can be reduced. Indeed, the capillary
term in the momentum equation is only localized in the vicinity of the interface Γ, and we only need
to evaluate the mixed variable Ψ in a small surrounding of Γ. Consequently, we only assemble the
equation (3.7) in a banded strip of width 𝜀′ around the interface, with 𝜀′ is a parameter proportional to
the mesh size. We commonly choose 𝜀′ = 4h in our computations. That helps to avoid unnecessary
computational effort. The banded strip is given by

B𝜀′ (t) = {K ∈ Th ∶ 𝛿𝜀′ (𝜑) ≠ 0}.

Only the coefficients that correspond to these elements are then considered in the global matrix. To
graphically show the size reduction of the linear system, we use the Matrix Market format¶ (ASCII-
based) to display the sparse and block-structured Jacobian matrix. This format is elaborated in such
a way that only the non-zero entries are encoded and the corresponding coordinates are explicitly
stored. We thereafter convert into the Matlab sparse format‖ to graphically visualize the sparsity
pattern. Let us consider a two-dimensional case and a structured mesh of 33′836 triangular elements.
We first consider Equation (3.7) in the entire Λ, and we assemble the matrix of the corresponding
linear system. The corresponding matrix displayed in Figure 1 (left) shows a sparse block structure,
and it has the size 288′4892. By restricting (3.7) in the banded domain B𝜀′ , the matrix size is reduced
to 223′3382 (Figure 1, right). A significant reduction of the size of the linear system is accordingly
obtained and corresponds to almost 22.6% in the number of rows and columns.

3.4. Anisotropic mesh adaptation

We use the bidimensional anisotropic mesh generator BAMG based a Delaunay-type triangulation
[58, 59]. We use a metric-based approach, and we follow the mesh adaptation procedure described
in [23, 43]. However, we consider a different meshing criterion more appropriate to the present
capillary problem. Compared with our previous work [23], the mesh adaptation procedure also aims
to refine the mesh in areas of less regular velocity, whereas it must coarsen the mesh in zones of
regular velocity, even coarser than the initial mesh.

¶Matrix Market format – http://math.nist.gov/MatrixMarket/index.html.‖Matlab – http://ch.mathworks.com/.
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Figure 2. Example 1: Left: Temporal evolution of the area. Middle: Comparison of the final shapes with the
reference solutions in [34]. Right: A close view in zones of maximal discrepancies between the different

shapes. The same color code as for the global view is used.

Figure 3. Example 1: Temporal evolution of the circularity /c and the center of mass Yc and comparisons
with reference solutions in [34].

Given the solutionΞn at time step tn, we shall consider a meshing criterion 𝜒(Ξn). We introduce the
metric tensor given by the Hessian matrix of the previous scalar field: 𝛁𝛁𝜒(Ξn). For each triangle K
in the mesh Th, a singular value decomposition of the Jacobian of the affine transformation that maps
a reference equilateral triangle into K is needed. An adapted mesh is then generated by shrinking all
triangles in both eigenvectors’ directions of 𝛁𝛁𝜒(Ξn), while we adjust the triangle’s sizes in these
directions such that the interpolation error becomes equidistributed. To increase the computational
accuracy near the interface and in zones where more complex flow patterns (such as recirculation
zones / vortices) occur, we introduce the following criterion:

𝜒(Ξ) =
((

𝜌⋆ + (1 − 𝜌⋆)H𝜀(𝜑)
)

u 2 + 4
(
𝜇⋆ + (1 − 𝜇⋆)H𝜀(𝜑)

)
D(u) 2

)1∕2
.

We tune the parameters of the mesh adaptation, such as the maximum anisotropy ratio, the smallest
edge’s length, and the maximal aspect ratio of all mesh elements K ∈ Th, to generate either almost
isotropic or anisotropic meshes (see snapshots in Figures 5 and 9 and Movies 1–5 in the supporting
information). In the numerical examples, we use moderately anisotropic meshes unless otherwise
stated.

4. NUMERICAL EXAMPLES

In what follows, we provide a set of numerical examples in both two-dimensional and three-
dimensional cases to demonstrate the main features of the proposed method.

Software implementation.The presented method has been implemented using the Rheolef [45]
environment. It is a general purpose C++ library for scientific computing, with special emphasis on
finite elements and parallel computation. Distributed memory parallelism is performed via MPI.**

**Message Passing Interface – http://www.mpi&LWx02010;forum.org.
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The Scotch library is used for distributed mesh partitioning.†† The library relies upon the Boost,‡‡

Blas,§§ and UMFPACK¶¶ libraries for much of its functionalities. The different meshes have been
generated using GMSH‖‖ and BAMG.*** The computational results are displayed graphically using
the software Paraview,††† while the plots are generated using Gnuplot.‡‡‡

4.1. Example 1: Numerical validation using the benchmark of the rising bubble dynamics

To proceed with the validation of our numerical method, we consider the quantitative benchmark
of the rising bubble dynamics in a heavier fluid introduced by Hysing et al. [34]. For a compara-
tive study, we only consider the setup of the ellipsoidal bubble where full agreement is obtained by
the different codes in [34], while we only show a sample result for the setup of the skirted bubble
and the corresponding adapted mesh in thin filamentary regions. Unless otherwise stated, the numer-
ical results are obtained using Strategy II, which behaves generally computationally cheaper than
Strategy I. More details about the computational costs will be provided afterwards.

The bubble is initially circular having a radius of r0 = 0.25, yielding an area |Ω|exact = 𝜋2/16 and
placed at x = (0.5,0.5) in the rectangular computational domain Λ = [0,1] × [0,2]. Simulations are
performed over the time period (0,T) = (0,3). An external gravity force g≈(0, − 0.98)T is considered
and points toward the bottom of the domain. The physical parameters are given by 𝜌o = 103, 𝜌i = 102,
𝜇o = 10, 𝜇i = 1, and 𝛾 = 24.5, which leads to the dimensionless numbers 𝜌⋆ = 0.1, 𝜇⋆ = 0.1, Re = 35,
Eo = 10, and Ca = 0.286. The no-slip wall conditions are imposed on the horizontal boundaries
(i.e., representing ΣD), while the free slip conditions u·𝝂 = 0 and t·D(u)·𝝂 = 0 are prescribed on the
remaining boundaries.

Let ux and uy be the velocity components such that u = (ux, uy). Following the benchmark, some
quantities of interest are considered and represent the center of mass Yc(t), the degree of circularity
¢(t), the minimum circularity ¢min, and the corresponding incidence time t|¢=¢min

, the rise velocity
Vc(t), the maximal velocity Vc,max and the corresponding incidence time t|Vc=Vc,max

. We have

Yc(t) =
1|Ω|∫Ω

y dx, ¢(t) =
2
√
𝜋|Ω||Γ| and Vc(t) =

1|Ω|∫Ω
uy bx.

Let NTS and NV be the numbers of time steps and mesh vertices, respectively. We evaluate the mean
mesh size h̃ during the simulation period as the mesh size of a structured triangular mesh having the
same NV at every time step:

h̃ = 1
NTS

NTS∑ 4√
1 + 8NV − 3

.

Because that characterizes a structured mesh of similar size, it leads to a problem with the same
number of degrees of freedom as the problem solved on the adapted mesh and consequently having
the same size of the linear system.

In Figure 2, the bubble shapes at the final time T = 3 with different mesh resolutions are com-
pared with the shapes obtained at T = 3 in [34] using the finest meshes. A close-up view in the
zone of maximal discrepancy is also provided in Figure 2 (right), showing overall a good agreement.
The bubble’s area is clearly preserved equal to |Ω|exact during the simulation period, as depicted in
Figure 2 (left). Figure 3 shows that no significant differences can be seen in the temporal evolution
of the center of mass Yc. The curves of the circularity ¢ agree well for the finest mesh, while only
an enlarged section around t|Vc=Vc,max

depicts some differences that are minimized for finer meshes.

††Scotch – http://www.labri.fr/perso/pelegrin/scotch.
‡‡Boost libraries – http://www.boost.org.
§§Basic Linear Algebra Subprograms library – http://www.netlib.org/blas.
¶¶Umfpack routines – http://www.cise.ufl.edu/research/sparse/umfpack/.‖‖GMSH – http://www.geuz.org/gmsh.
***BAMG – http://people.sc.fsu.edu/~jburkardt/data/bamg/bamg.html.
†††Paraview – http://www.paraview.org.
‡‡‡Gnuplot – http://www.gnuplot.info.
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Figure 4. Example 1: Temporal evolution of the rise velocity Vc and detailed view around the peak of velocity
and comparisons with reference solutions in [34]. The same labels and color code are used.

Figure 5. Example 1: Snapshots showing the moderately anisotropic adapted meshes, the pressure isocontour
lines, and the corresponding shapes Γ of the rising bubble at times t = 0.214, 1.178, 1.75, 2.321, and 2.571,3,
respectively. During the simulation period, the meshes are characterized by 1∕h̃ ≈ 37.1, 1∕hmin ≈ 58.8, and

1∕hmax ≈ 10.
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Figure 6. Example 1: Convergence curves of the residuals using Strategies I and II in the semi-logarithmic
scale.

Similarly, the evolution of the rise velocity in our simulations is agreeing well with the reference
results (Figure 4, left). The close-up view in Figure 4 (right) clearly shows the agreement, while
complete convergence seems to be achieved. In Figure 5, we provide some snapshots showing the
temporal evolution of the interface during the simulation period and the corresponding adapted
meshes. Observe that the initial bubble deforms while staying compact for all t ∈ (0,3). During the
simulation period, the meshing procedure clearly allows to generate high-density meshes around the
free interface and in particular areas of high norm of the strain tensor. However, big mesh elements
are generated in front of the rising bubble where the velocity field has a more regular pattern; see
also the movies in the supporting information.

We now proceed with a quantitative comparison of the aforementioned benchmark quantities
against some computational results available in the published literature using different computa-
tional frameworks, as detailed in Hysing et al. [34], S̆trubelj et al. [7], Klostermann et al. [9], and
Doyeux et al. [8]. Several mesh refinement levels are used, and computational results are provided
in Table I showing overall very consistent results. The mean mesh size and the smallest edge of
triangles K ∈ Th are also provided.

Similar to [34], we measure the temporal evolution of the different benchmark quantities qt against
a reference solution, referred to as qr

t , obtained with the finest meshes and the smallest time step size.
We compute the following relative errors:

‖e‖1 =

NTS∑
t=1

||qr
t − qt

||
NTS∑
t=1

||qr
t
||

, ‖e‖2 =

√√√√√√√√√
NTS∑
t=1

||qr
t − qt

||2
NTS∑
t=1

||qr
t
||2

and ‖e‖∞ =
max

t
||qr

t − qt
||

max
t

||qr
t
|| .

In addition, we compute the convergence rate ROC for the desired quantities that evaluates the
convergence of the method toward an approximate discrete solution:

ROCi =
log10

(‖el−1‖i∕‖el‖i
)

log10
(
hl−1∕hl

) , i ∈ {1, 2,∞} ,

where el and el − 1 stand for the errors generated on consecutive meshes of sizes hl and hl − 1, respec-
tively. We consider the standard linear interpolation to account for the differences in the time step
sizes.

Let us first consider structured triangular meshes. The relative errors are provided in Table II,
showing a convergence rate of about 2 for the circularity in the l1 and l2 norms and a convergence
rate of about 1.5 in the l∞ norm. The convergence rate of the center of mass approaches 1.5 in all
norms. When using the adaptive mesh technique aforementioned, results in Table III suggest that the
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Table II. Example 1: Convergence results for the circularity ¢ and the center of
mass Yc.

1/h ‖e‖1 ROC1 ‖e‖2 ROC2 ‖e‖∞ ROC∞

17 1.4875E-2 1.1948E-2 2.5962E-2

¢ 39 3.9292E-3 1.603 4.4786E-3 1.812 7.4143E-3 1.509

72 1.1574E-3 1.993 1.3324E-3 1.977 2.6123E-3 1.701

143 3.2724E-4 1.841 3.7146E-4 1.861 8.4124E-4 1.651

17 2.0930E-2 2.1738E-2 3.0102E-2

Yc 39 6.8396E-3 1.347 7.1977E-3 1.331 6.7916E-3 1.793

72 2.5769E-3 1.592 2.9968E-3 1.429 2.9706E-3 1.387

143 9.2256E-4 1.497 1.1577E-3 1.386 1.2075E-3 1.312

The results are obtained with structured meshes.

Table III. Example 1: Convergence results for the circularity ¢ and the center of
mass Yc.

1∕h̃ ‖e‖1 ROC1 ‖e‖2 ROC2 ‖e‖∞ ROC∞

17.5 2.5921E-3 2.6717E-3 3.0156E-3

¢ 38.9 7.5355E-4 1.547 7.7084E-4 1.556 8.5744E-4 1.574

72.1 1.6915E-4 2.421 1.9821E-4 2.201 2.9010E-4 1.756

143.4 3.1350E-5 2.451 4.5012E-5 2.402 6.5744E-5 2.159

17.5 9.9752E-3 1.0110E-2 3.9854E-2

Yc 38.9 1.9744E-3 2.028 2.2811E-3 1.864 4.8755E-3 2.630

72.1 3.9801E-4 2.595 5.2915E-4 2.368 8.9808E-4 2.741

143.4 7.0714E-5 2.512 8.7084E-5 2.624 1.7741E-4 2.359

The results are obtained with structured meshes.

circularity approaches a convergence order of 2.5 in the l1 and l2 norms, while a rate of 2 is observed
in the l∞ norm. The convergence order of the center of mass is of about 2.5 in all norms.

In the following, we proceed with a comparative study between Strategies I and II.
The first test concerns the convergence properties of both strategies, and we particularly high-

light the convergence rates of each Newton variant. Let us consider an initial mesh having 25′600
elements, and we perform simulations using fixed time steps. The residuals R(Ξk

n) at iteration k are
computed in the L∞ norm.

Given the same initial conditions, we perform computations for various time step sizes Δt, and
we report the residuals’ convergence curves in Figure 6. The corresponding convergence rates are
expressed as

ln
(|R(Ξk

n)|∕|R(Ξk−1
n )|)

ln
(|R(Ξk−1

n )|∕|R(Ξk−2
n )|) , for k ⩾ 2. (4.1)

Observe that, overall, the convergence is very fast for both strategies. The convergence rates in
Table IV show that the quadratic convergence is obtained with Strategy I, while the third-order con-
vergence rate is obtained with Strategy II. These correspond to the expected behavior of the two
strategies and confirm that the tangent problem is correctly derived and implemented. Notice that
any small error would deteriorate the quadratic or cubic behavior, and rather lead to a linear con-
vergence slope. Gradually increasing the time step impacts the performance of the Newton method.
Indeed, for large values of Δt, the starting value for the Newton loop becomes far from the expected
solution, yielding a plateau where the residual first decreases slowly; it converges subsequently with
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Table IV. Example 1: Convergence rates of the residuals (4.1)
using Strategies I and II for various time step sizes.

k Δt = 0.01 0.05 0.1 0.25 0.5 0.67

Strategy I

2 2.109 1.766 4.455 45.209 27.229 1.220

3 2.050 1.218 1.482 1.917 3.512

4 1.851 2.453 1.835 2.163

5 1.926 1.807 2.329

6 1.847

7 1.637

Strategy II

k Δt = 0.01 0.025 0.05 0.1 0.25 0.5

2 2.883 3.106 3.154 3.435 2.148 4.207

3 1.470 3.248 1.036

4 4.418

5 2.440

Table V. Example 1: Comparison between the
computing times when using Strategies I and II

for several values of the time step size.

Δt CPU (Strategy I) CPU (Strategy II)

0.001 8.9481 12.9463

0.01 15.9305 15.8132

0.1 27.4434 20.6427

0.15 33.7927 22.9934

0.2 42.9935 26.9260

0.275 59.6415 34.8457

the expected quadratic or cubic behavior. Above a threshold value of Δt, a complete breakdown of
the algorithm holds. Remark that there exist numerical strategies that improve the Newton conver-
gence when the initial guess is far from the solution such as the damped Newton algorithm, but that
is definitely beyond the goal of this work.

We now focus on the computational cost for both strategies. To have a quantitative comparison,
we evaluate the wall clock time for serial simulations that indicates, together with the errors eval-
uation, how much effort is needed to establish a certain accuracy. Further insights into the parallel
performances and scalability will be only provided subsequently in the three-dimensional case.

We perform computations with the same structured mesh having 25 600 triangles. In Table V, we
plot the timings of the computations for both strategies with respect to the time step size. We can
observe that Strategy I is slightly cheaper than Strategy II when the time step is very small (almost
for Δt ⩽ 0.01). In such a situation, both algorithms converge in less than two iterations. Strategy II
is then more expensive than Strategy I because Strategy II requires one more residual’s assembly
and resolution of the linear system in each Newton subiteration. However, Strategy II becomes more
beneficial for larger time steps, thanks to the third-order convergence of this method.

Thereafter, we compare the time step size used in the present method and the time step limit from
the stability criterion. Only structured meshes are used, and the time step adaptation is disabled. A
set of simulations for successively refined meshes is performed, and we display the maximum time
steps enabled for both strategies. Using an explicit decoupling scheme where the capillary term is
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considered as a right-hand side in the momentum equation leads to a stability condition given by the

convective time step limit. It imposes restrictions on the time step size: ΔtCFL <

√⟨𝜌⟩h3

2𝜋𝛾
, where ⟨𝜌⟩

is the average fluid density at the interface [29, 31]. We perform numerical simulations using both
strategies, and we report in Table VI the maximum time step sizes. The results illustrate the gain
obtained by using the fully implicit schemes, for which we can increase Δt up to almost 300 times
ΔtCFL. Moreover, we observe that, although Strategy II converges faster than Strategy I, Strategy I
allows to use larger values of Δt than Strategy II.

Let us focus now on the adaptive time scheme, and perform simulations using the same structured
mesh. In Figure 7, we compare the adapted values of Δt for both strategies against the capillary
time step restriction for explicit schemes, and we additionally report the corresponding numbers
of Newton subiterations. We mainly observe that Δt has almost similar values when using both
strategies. However, while Strategy II generally converges after two or three iterations, Strategy I
usually needs five iterations.

Consequently, although the quadratically convergent Strategy I allows higher time steps, Strat-
egy II with the third-order convergence performs globally better. Indeed, Strategy II is computation-
ally cheaper, thanks to its cubic convergence, and we do not usually use too large time steps as those
allowed by Strategy I. In what follows, Strategy II will be used in our computations.

Table VI. Example 1: Comparison between the maximal time
step Δtmaxfor Strategies I and II and the time step limit from

the stability criterion for several values of the mesh size h.

Mesh size Δtmax(Strategy I) Δtmax(Strategy II) ΔtCFL

1/15 0.89 0.51 0.032

1/30 0.91 0.50 0.011

1/60 0.86 0.44 0.0041

1/120 0.435 0.325 0.0014

1/240 0.172 0.114 0.0005

Figure 7. Example 1: The adaptive time step sizes (top) and the number of Newton iterations (bottom) during
the simulation period for both strategies. The semi-logarithmic scale is used in the first figure.
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Figure 8. Example 1: Shrinked bubble and comparison with available computational results in [34]. Top:
Final shapes at t = 3. Middle: Temporal evolution of the circularity and the bubble’s area. Bottom: Temporal

evolution of the center of mass and rise velocity.

In this last paragraph, we consider the second setup of the skirted bubble described in Hysing et al.
[31]. We only present a sample result obtained using the adaptive time steps scheme and the mesh
adaptation procedure, without making any grid convergence study. We consider the same computa-
tional domain and initial conditions as adopted in the previous test case. The physical parameters are
𝜌o = 103, 𝜌i = 1, 𝜇o = 10, 𝜇i = 0.1, and 𝛾 = 1.96, while the dimensionless parameters are 𝜌⋆ = 10 − 3,
𝜇⋆ = 10 − 2, Re = 35, Eo = 125 and Ca ≈ 3.571.

Figure 9 provides successive snapshots showing the adapted meshes and the corresponding shapes
of the interfaces; see also Movie 6 in the supporting information. The adapted mesh provides high
mesh density and then more accurate computations in the zones of small filaments. In Figure 8, the
bubble’s shape at t = 3 is compared with the shapes obtained by the different groups using the finest
meshes in [31]. Moreover, Figure 8 plots the temporal development of the bubble’s area |Ω(t)|, the
circularity ¢(t), the center of mass Yc(t), and the rise velocity Vc. In Figure 8, an acceptable agreement
is generally observed (Figure 9).

4.2. Example 2: Oscillating bubble dynamics

The second example concerns the relaxing viscous bubble subject to surface tension [7, 60–63].
We consider the setup described in [64, 65] of the ellipsoidal interface having initially the semi-
major axis a = 0.75 and the semi-minor axis b = 0.5, respectively, in the x-direction and y-direction
and immersed in a fluid having the density 𝜌 = 1 and the viscosity 𝜇 = 1. We set the ten-
sion coefficient to 𝛾 = 10. The interface is initially centered in a square computational domain
Λ = [−1.5,1.5] × [−1.5,1.5]. Homogeneous Dirichlet boundary conditions are considered for the
velocity. Under the effect of the surface tension, the bubble starts oscillating, and the capillary force

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2016)
DOI: 10.1002/nme



IMPLICIT FEM FOR THE DYNAMICS OF FREE SURFACE FLOWS WITH SURFACE TENSION

Figure 9. Example 1: Shrinked bubble. Snapshots showing the almost isotropic meshes, the pressure isocon-
tour lines, and the corresponding shapes Γ of the rising bubble at times t = 0.135, 0.765, 1.065, 1.635, and

2.340,3, respectively. The meshes are characterized by 1∕h̃ ≈ 110, 1∕hmin ≈ 138.1, and 1∕hmax ≈ 67.5.

shall bring the ellipse back to an equilibrium circular steady state having the same area and the radius
R∞ =

√
ab ≈ 0.61237, in which the capillary force vanishes. We observe the relaxation of the

bubble in the time interval (0, 6.5).
The purpose of this test case is to perform a comparison of the stability properties between the

present fully implicit and a fully explicit scheme. For such an explicit scheme, the time step is first
bounded by the convective time step limitation ΔtCFL, whereas the most limiting time step at the end
is the viscous time step limit corresponding to small velocities.

We consider the explicit scheme detailed in Appendix A, in which the surface tension appears as
a right-hand side in the momentum equation. For all simulations in both explicit and implicit cases,
we consider the same time step size Δt = 0.012 without applying the adaptive time scheme. The
computational domain is discretized on a family of regular meshes without adapting the mesh. The
successively refined meshes have the mesh size h < 1/20. We notice that the stability criterion is
violated for all meshes, and the simulations will obviously fail depending on the mesh size.

Figure 10 shows the relaxation of the bubble and the temporal evolution of the bubble’s axes (i.e.,
the vertical and horizontal radii) for several mesh sizes. The numerical results clearly depict that the
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Figure 10. Example 2: Time evolution of the horizontal and vertical radii of the relaxing bubble for different
values of the time step size. Left: Fully explicit scheme. Right: Fully implicit scheme.

Figure 11. Example 2: Temporal evolution of the shape of the oscillating bubble with the fully explicit scheme
for t = 0, 0.305, 0.617, 0.948, 1.259, and 4.2 (from left to right).

explicit treatment of the capillary force leads to severe time step restrictions. However, the stability
is significantly improved with the fully implicit scheme when using large time steps and relatively
fine meshes.

In Figures 11 and 12, we provide some snapshots showing the shapes of the bubble during the
relaxation. To better infer the limit of stability, we also plot the pressure profile and some isocontour
lines, and we compute some errors when the equilibrium state is reached. Let Δp|Γ represent the
pressure jump across the interface and H∞ = 1∕R∞ be the exact mean curvature on Γ in the steady
state. Let Δp̂||Γ denote the jump of pressure across Γ obtained at the equilibrium state with h = 1/350
and Δt = 2 × 10 − 3. We introduce the following errors:
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Figure 12. Example 2: Temporal evolution of the shape of the oscillating bubble with the fully implicit
scheme for t = 0, 0.305, 0.617, 0.948, 1.259, and 4.2 (from left to right).

eH =

√√√√∫Λ||divn − H∞||2𝛿𝜀(𝜑)|𝛁𝜑|
2𝜋R−1

∞
and

ep(t) =
||Δp|Γ(t) − Δp̂|Γ||||Δp̂|Γ|| with Δp||Γ =

|||||
∫ΛH𝜀(𝜑)p
∫ΛH𝜀(𝜑)

−
∫Λ (1 −H𝜀(𝜑)) p

∫Λ (1 −H𝜀(𝜑))

|||||
When using the fully explicit scheme, the solution remains stable when using a mesh size h = 1/20.
Indeed, that corresponds to a time step size that is almost eight times larger than ΔtCFL. Further mesh
refinement results in non-physical numerical oscillations that pollute the solution and lead finally to
a complete breakdown of the algorithm.

However, Figure 12 shows the stability of the solution is maintained for significantly finer meshes,
and we observe that it is still possible to obtain a stable solution when using time step sizes that
exceed the capillary time step size by almost a factor of 160. For a mesh resolution h = 1/320, we
observe that oscillations start to appear for t ⩾ 0.3. The pressure isocontour lines and the error ep

clearly show that the solution is no longer stable.
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Table VII. Example 2: Temporal error history associated with the time approximation using BDF2.

Δt eΔt,1(u) ROCΔt,1(u) eΔt,0(p) ROCΔt,0(p) eΔt,0

(H𝜀(𝜑)
)

ROCΔt,0

(H𝜀(𝜑)
)

5 × 10 − 3 0.50086 0.20515047 0.014140

2.5 × 10 − 3 0.13235 1.920 0.05470264 1.907 0.004035 1.809

1.25 × 10 − 3 0.03509 1.915 0.01418740 1.947 0.001153 1.807

6.25 × 10 − 4 0.00959 1.871 0.00374819 1.920 0.000336 1.775

Errors are computed on a fine mesh of size h = 1/100.

Notice that although the implicit method allows us to maintain stability for significantly larger
time steps, it is not always useful to use too large values in practice. In fact, using too large time
steps may not help to capture the physics of the problem.

Thereafter, we verify the temporal convergence of the proposed numerical strategy. We consider
the time horizon t ∈ (0, T = 1). Let qN

h represent the discrete approximation of a generic field q eval-
uated at the final time tN = T . We compute the errors corresponding to the temporal discretization of
the field q with respect to a reference solution q̂N

h obtained with the finest time stepΔt = 3.125× 10 − 4

as follows:

eΔt,i(q) = qN
h − q̂N

h i,Ω and ROCΔt,i(q) =
log10

(
eΔt,i(q)∕eΔt,i(q)

)
log10

(
Δt∕Δt

) ,

where i ∈ {0, 1}, and Δt and Δt represent two consecutive time steps. In Table VII, we provide the
errors corresponding to the temporal discretization for successively refined time steps. Accordingly,
a second-order convergence behavior is observed.

4.3. Example 3: Three-dimensional test case

In this example, we present numerical simulations showing the applicability of the present method-
ology in the three-dimensional case (d = 3). We emphasize that the aim of this test case is not to
perform grid convergence studies. To that end, we consider a setup of the rising bubble analogous to
that described in Example 4.1 with a larger initial bubble. Moreover, we will present a study of the
parallel performances.

The computational domain is Λ = (0,1) × (0,1) × (0,2), and the time interval for the computations
is (0,1.2). The bubble is initially circular, centered in (0.5, 0.5, 0.5) and has a radius equal to 0.3. The
fluid is assumed to be initially at rest. The dimensionless parameters are given by 𝜌⋆ = 0.1, 𝜇⋆ = 0.1,
Re = 35, Eo = 52.5, and Ca = 1.5. In Figure 13, we provide snapshots of the numerical results,
showing the interface Γ (colored in red) and the velocity field. The bubble at final time T = 1.2 has
a nonconvex shape.

We thereafter study the scalability and parallel performance of the numerical solver. However,
we do not aim to improve the parallel properties of the solver with respect to the state-of-the-art
solvers. The scalability represents an important concept, especially in the three-dimensional case,
and measures the ability of the parallel implementation to maintain a constant efficiency. We first
introduce the speedup, which compares the computational time required on a parallel architecture
with the time required by a sequential implementation. We characterize the parallel performances
through the strong scalability and the weak scalability.

At each Newton iteration, the discretized problem is solved in three steps: We first assemble the
linear system, then the Jacobian matrix is factorized, and we finally solve the linear system. There-
after, we consider the aforementioned test case, and we study the scaling efficiency for each step.
We generate several unstructured meshes using the software GMSH. The nomenclature, number of
tetrahedra, and the corresponding degrees of freedom are provided in Table VIII. Figure 14 plots on
the logarithmic scale the computational timings, that is, CPU, with respect to the degrees of freedom
per processor for each step and for the different meshes.
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Figure 13. Example 3: Snapshots showing the shapes Γ of the rising bubble and the velocity field in the
vertical mid-planes of the bubble at times t ∈ {0, 0.3, 0.6, 0.85, 1.05, 1.2}, respectively.

Regarding the strong scalability, it measures, for a fixed problem size, how much the computing
time changes if the number of processors increases. A perfect strong scalability corresponds to a
slope equal to one in the logarithmic scale. Indeed, a two-time faster execution holds if the number
of processors is doubled. Figure 14 shows that the assembly and the factorization steps are strongly
scalable, whereas strong scalability is deteriorated when solving the linear system. That does not
affect significantly the strong scalability of the entire computation, as the time required to solve the
linear system is always very small compared with the previous steps.

Regarding the weak scalability, it studies the difference in the computational time with respect to
the number of processors for a fixed problem size per CPU. A perfect weak scalability corresponds
to an exact overlap of the curves corresponding to the use of different meshes. Figure 14 shows
very close curves during the assembly step when using the different meshes. That results in almost a
perfect weak scalability. However, the weak scalability of the Jacobian factorization and resolution
of the linear system are not as good as the assembly step because the different timing curves are
not superimposed.
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Table VIII. Example 3: Nomenclature and characteristics
of the different meshes used for the scalability study.

Mesh code Number of tetrahedra Number of DOFs

S 20’893 171’729

M 49’524 389’278

F 160’894 1’218’199

Figure 14. Example 3: Parallel performances of the numerical method. Timings for the assembly, the fac-
torization, and the resolution of the linear system using the meshes listed in Table VIII and number of

CPUs.

Without claiming to be exhaustive, we provide qualitative comparison of the parallel performances
of the present solver with respect to other similar solvers using the level set method. Compared with
the level set solver implemented within the C++ library LifeV in a finite element framework and
tested on similar mesh resolutions [66], we observe similar good scaling properties for the assembly
of the linear system. Both the strong and weak scalabilities are similarly deteriorated when solv-
ing the linear system. In [67], a different method is presented, and the fluid interface solver uses a
hybrid front tracking/level set method: the level contour reconstruction method, while the code is
written in Fortran 2003. The parallel performances are tested on highly refined grids, showing better
performances in weak scalability.

5. CONCLUSION

In this paper, we have presented new fully implicit and monolithic approaches to solve free surface
problems with surface tension. For the first time, two numerical strategies based on the use of two
variants of the Newton method in a finite element framework have been introduced, and we have
reported computational results in both two-dimensional and three-dimensional cases. The two strate-
gies require one assembly of the Jacobian system, while Strategy II requires one more evaluation
of the global residual. Efficient derivation and implementation of the tangent problem in both cases
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have been proved through the study of the convergence properties. Numerical investigations have
been performed, showing second-order and third-order convergences for both strategies, as expected
from a theoretical viewpoint. Fully implicit methods feature to be unconditionally stable, and we
have shown numerically that stability is ensured for considerably larger time steps compared to the
explicit decoupling strategy most commonly used in the published literature [24, 29, 31]. In addi-
tion, we have observed that, although Strategy I allows the use of higher time steps, Strategy II is in
general computationally cheaper and represents our preferrable approach.

The improvements and extensions of the present method should be further explored. In particular,
we are focusing on the development of inexact variants of the Newton method that can be efficient and
computationally cheaper compared with the present strategies. Because the Newton method presents
only local convergence properties, that is, the starting values must be close enough to the solution,
we are currently investigating globalized Newton variants based on damping techniques to allow
the use of larger time steps. Moreover, future work should investigate the robustness of the present
method in the case of high Reynolds numbers. Last but not least, we also foresee the applicability of
the proposed framework to the simulation of interfacial flows with topology changes.

The present approach is general and can be useful for a broad set of engineering problems with
multiphase flows. In particular, the current developments are part of an ongoing work to study the
hydrodynamics of lipid bilayer vesicles mimicking red blood cells under bending forces in small
capillaries where the Reynolds number is small enough for the Stokes limit to be valid [68–70]. The
vesicle problem is highly nonlinear, and the bending force includes fourth-order derivatives with
respect to the cell shape [71]. Fully explicit decoupling strategies are always used in the published
literature, yielding a more severe stability condition than the one characterizing the capillary prob-
lem. The derivation and study of fully implicit strategies remain a challenging topic, and the present
approach can provide an efficient way to implicitly solve the vesicle problem.

APPENDIX A: EXPLICIT SCHEME FOR A COMPARATIVE STUDY

To compare the present fully implicit method with respect to the explicit methods, we introduce
the following scheme in which an explicit treatment of surface tension holds, while the backward
differentiation scheme of second order approximates the time derivative terms, and an explicit time
discretization of the inertia term is considered.

The explicit algorithm consists in decoupling and solving the fluid problem and the level equation
in a segregated fashion. The velocity and pressure are first computed using a monolithic approach
for the Navier–Stokes system, in which the surface tension force is added as a source term in the
right-hand side of the momentum equation. The level set function is subsequently advected using the
computed velocity. Finally, the mean curvature is computed and projected in the appropriate finite
element space. The semi-discrete problem reads:

(i) Given 𝜑n−1, find the velocity un ∈ V(ub) and pressure pn ∈ Q such that

Re𝜌𝜀(𝜑n−1)
(

3un − 4un−1 + un−2

2Δt
+ (un−1 · 𝛁) un

)
− div

(
2𝜇𝜀(𝜑n−1)D (un)

)
+ 𝛁 pn = 1

Ca
Hn−1

𝛁𝜑n−1|𝛁𝜑n−1|𝛿𝜀 (𝜑n−1) + Re𝜌𝜀(𝜑n−1)g,
(A.1)

𝑑𝑖𝑣 un = 0. (A.2)

(ii) Given un, find the level set function 𝜑n ∈ X(𝜑n−1) such that

3𝜑n − 4𝜑n−1 + 𝜑n−2

2Δt
+ un · ∇𝜑n = 0. (A.3)
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