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Vesicles under flow constitute a model system for the study of red blood cells (RBCs)
dynamics and blood rheology. In the blood circulatory system the Reynolds number
(at the scale of the RBC) is not always small enough for the Stokes limit to be valid.
We develop a numerical method in two dimensions based on the level set approach and
solve the fluid/membrane coupling by using an adaptive finite element technique. We
find that a Reynolds number of order one can destroy completely the vesicle tumbling
motion obtained in the Stokes regime. We analyze in details this phenomenon and
discuss some of the far reaching consequences. We suggest experimental tests on vesi-
cles. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3690862]

I. INTRODUCTION

The study of models of red blood cells (RBCs), such as capsules and vesicles, has known recently
an upsurge of interest in various communities, such as physics, applied mathematics, mechanical
engineering, and so on. A systematic experimental analysis1 of RBCs under shear flow has revealed
that RBCs can either undergo a tank-treading (TT) or tumbling (TB) motion. In the TT regime the
main axis makes a given angle (less than π /4) with respect to the flow direction whereas the RBCs
membrane undergoes a tank-treading motion. Upon increasing the viscosity contrast λ (ratio of the
internal over the external fluid viscosities) the RBC exhibits TB (or flipping) motion. There are
two classes of model systems that are used to mimic RBCs: (i) capsules and (ii) vesicles. Capsules
are made of an extensible polymer membrane which is endowed with an in-plane shear elasticity
(mimicking the elasticity of the cytoskeleton of the RBCs).2 Vesicles are, like RBCs, made of an
inextensible phospholipid bilayer membrane which is purely fluid (thus devoid of shear elasticity).3

The inextensible character has proven to confer to vesicles rich dynamics,3 since inextensibility,
triggers, even to leading order, high order nonlinearities.

An early model to understand the TT-TB transition of RBCs has been presented by Keller and
Skalak (KS).4 They adopted a vesicle-like model (fluid inextensible membrane), and imposed a fixed
shape (only orientation in the flow is permitted). The shape of the vesicle is assumed to be ellipsoidal
for which a solution for the Stokes flow was available. KS reported that the transition depends both
on the viscosity contrast λ and on the reduced volume v (the actual volume over the volume of a
sphere having the same area), which is given in 2D (the situation in which we are interested here)
by v = (A/π )/(P/2π )2, where A is the area occupied by the internal liquid and P is the vesicle
perimeter.

The analytical as well as numerical calculations4–7 for the TT-TB transition have been restricted
to the Stokes limit: the inertia was neglected. Available experimental data on vesicles8, 9 correspond
to the very small Reynolds numbers limit. However, in the blood circulatory system, especially in
the arterioles, the Reynolds number evaluated at the scale of the RBC may be of order unity.10

Our main objective in this study is to analyze the dynamics of vesicles under a shear flow by
taking into account the inertial effects. Our study reveals that a Reynolds number of order unity is
capable of inhibiting TB in favor of TT motion. The inhibition of TB by inertia was briefly mentioned
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in Ref. 11. Here, we analyze the phase diagram in the relevant parameter space, and discuss some
implications together with the experimental feasibility to test this prediction.

II. MODEL AND TECHNIQUES

We consider a 2D vesicle under a linear shear flow. The legitimacy of a 2D geometry is supported
by the fact that the 2D dynamics obtained in numerical simulations6 are in good agreement with
results obtained in 3D by KS. Hereafter r will denote a two-dimensional position vector having the
Cartesian components x, along the plates, and y, in the perpendicular direction (see Fig. 1). The
vesicle is immersed in a fluid occupying a square domain of lateral length 2L. Let R be the radius of
a circle having the same perimeter as the vesicle. The aspect ratio is given by R/L.

The velocity and pressure fields obey in the two fluid domains (inside and outside the vesicle)

ρ

(
∂u
∂t

+ u.∇u
)

− div (2η D(u)) + ∇ p = 0,

div u = 0,

where D(u) = (∇u + ∇uT)/2 is the deformation rate tensor, with η = ηi is the internal viscosity
and η = ηo is the external one. At the vesicle membrane the hydrodynamic stress is balanced by the
membrane force

−κ

(
∂2 H

∂s2
+ H 3

2

)
n + Hζn − ∂ζ

∂s
t + [2ηD(u) − pI ]n = 0,

where κ is the membrane bending rigidity, H is the curvature, n and t are the normal and tangential
unit vectors, and ζ is a Lagrange multiplier enforcing locally constant arclength. It is fixed by
requiring the surface divergence of the velocity field to vanish

divs u = 0.

The two plates at y = ±L move horizontally with opposite constant velocity V (shear flow). At y
= ±L, we impose no-slip condition u = (±V, 0), while on the lateral size x = ±L we impose
stress-free surface (see Fig. 1).

The Navier-Stokes equations are nonlinear, so that the quite precise method based on boundary
integral formulation6, 12 cannot be used. We resort here to the level set approach. Very briefly, in this
method the membrane location is defined by a level set function φ(r, t) depending on the 2D vector
r = (x, y) and time. The membrane position is taken to be (this is an implicit representation of the
membrane) φ = 0, and the level set function obeys a transport equation

∂φ

∂t
+ u.∇φ = 0.

Because φ is defined everywhere in the entire domain, the fluid/membrane interaction is solved in a
fully Eulerian scheme. The normal and the tangent vectors, as well as the curvature are defined in
terms of φ: n = ∇φ/|∇φ|, H = div n, so that the full membrane force can be defined in the entire
domain. The Lagrange multiplier is also defined in the entire domain. Note that while the membrane
force is defined in the whole domain, its action is localized to the membrane region only.

The above set of equations has been reformulated in terms of a variational representation (the
so-called weak formulation) and has been implemented in a finite element scheme. We use an
improvement of the classical level set method that takes care of solving exactly the volume and area
constraints. Details of the numerical study and benchmark tests are published elsewhere,13 while we
focus here on the main physical results only.

We dimensionalize the equations by choosing R as a length scale, U = VR/L as a velocity scale,
T = R/U as a unit of time and ηoU/R as a unit of pressure. This leads us to three-dimensionless
physical parameters

Re = ρoV R2

ηo L
, Ca = ηo R3γ̇

κ
, λ = ηi

ηo
.
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FIG. 1. (Color online) The set-up and notations. Actually the vesicle shapes, in the TB regime, shown here are obtained by
numerical simulations. Left: a vesicle with a weak inertia (Re = 0.01). Right: a vesicle with inertia (Re = 10) showing ample
vesicle deformation as compared to that in the Stokes limit. The finite element network and the flow lines are shown.

This set has to be supplemented with two geometrical parameters, namely, the vesicle confinement
Cn = R/L and the reduced area v.

Here we shall take the same densities inside and outside the vesicle, and we shall keep the
confinement to a given value (typically 0.4). Moreover, in 2D, the TT-TB transition is quasi-
insensitive6 to Ca. We set Ca = 100 and have checked that higher or smaller values do not affect
the results. We are thus left with three free parameters v, λ, and Re. In the exploration of the inertial
effect, we shall prescribe a given value for v and vary only λ and Re. However, in order to compare
our results obtained in the quasi-Stokes regime to existing numerical results in the Stokes regime
we have also examined several values of Cn and v, as described below.

III. RESULTS AND DISCUSSION

In order to test and validate our analysis, we compare our results with available numerical data
and set Re = 10−2. In our computations, a small confinement Cn = 0.25 has been chosen, so that the
influence of boundaries be weak enough (see also Ref. 13). We have varied λ, v and have determined
the transition line separating the regime of TT from that of TB. The results are presented in Fig. 2
showing a good agreement with the phase field method (see Fig. 5 in Ref. 6). Remark that the 2D
KS theory,4 based on some simplification hypothesis, is able to capture the main behavior of the
phase diagram.

Next we examine the role of the Reynolds number on the two dynamical regime TT and TB. A
first noticeable effect is that upon increasing Re in the TB regime the period of oscillation increases
significantly (Figs. 3 left panel and 4) until it diverges (Fig. 3 right panel) for a critical value of Re.
The interesting fact is that this behavior occurs for quite moderate values of Re. The divergence of
the period means that the TB is suppressed in favor of a TT regime. Another impact of the inertial
effect is that the vesicle adopts in the TT regime a terminal angle that significantly depends on Re;
the terminal angle can have values which may be twice as large as compared to those obtained in
the Stokes regime (see Fig. 5). Furthermore, the effect of inertia causes a stronger deformation of
the vesicle, as shown on Fig. 1.

Our current intuitive understanding is as follows. In the absence of inertia TB occurs5 when the
viscosity contrast reaches a critical value such that the torque due to the applied shear flow cannot
anymore be efficiently converted into the membrane tank-treading torque because the internal fluid
is so viscous that it precludes tank-treading. Therefore, the vesicle behaves as almost quasi-rigid, and
TB takes place. In other words, in the TB regime, the injected power due to shear is predominantly
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FIG. 2. (Color online) Phase diagram and comparison with the phase field method6 (circles and crosses) where ε denotes
the interface width.

40
30
15

Re = 9.7
θ(t)

time t

70350

π

2

0

−
π

2

9
8.8
8.5

8
Re = 5

θ(t)

time t

12080400

π

2

0

−
π

2

FIG. 3. (Color online) The behavior of the angle of the main axis of the vesicle as a function of time for different Reynolds
numbers, showing that inertia slows down the motion, until suppressing TB (v = 0.82, λ = 20).

50
30
20
15

λ = 10T

Re

102101110−110−210−3

120

80

40

0

FIG. 4. (Color online) The behavior of the TB period T vs Re for various viscosity ratio λ, showing divergence of the period
at a critical Reynolds number.
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FIG. 5. (Color online) The behavior of the terminal angle θ∞ in the TT regime vs Re for various viscosity ratio λ.

transferred to dissipation of the surrounding fluid. TB in the presence of inertia must, besides
dissipation in the surrounding fluid, be accompanied with kinetic energy transfer to the surrounding
fluid, a cost that increases with Reynolds number so that TB becomes unfavorable.

We have performed a systematic analysis (at fixed reduced area v = 0.82) on the occurrence
of TT and TB as a function of the viscosity contrast λ and Reynolds number Re. The results are
reported on Fig. 6. In the absence of inertia (Re = 0) the TT-TB bifurcation occurs at about λ = 6.
As Re is increased TB is delayed. For example, at Re � 5 the critical λ has approximately doubled
(it is about 12). It is interesting to note that the separation line in Fig. 6 continues to increase, but
still for Re ∼ 16, TT continues to prevail even though the viscosity contrast is quite large (λ = 80).
At such a large contrast one might be tempted to expect the vesicle to behave like a rigid particle
(meaning that TB prevails). However, inertia is still capable of enforcing membrane tank-treading
(we found, for a given TT angle, almost the same tank-treading velocities for a small and a large
Re), enabling the vesicle to enjoy its fluidity, making it quite distinct from a rigid particle. Finally,
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FIG. 6. (Color online) The phase diagram of the TT and TB motion as a function of the viscosity contrast λ and the Reynolds
numbers (v = 0.82, Ca = 100), for two confinements Cn = 0.5 and Cn = 0.25.
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we have analyzed the effect of confinement. By reducing the box size by a factor 2, we find a very
weak shift of the phase diagram (Fig. 6).

Some concluding remarks might be useful. In human arterioles10 the wall shear rate is of about
8000 s−1. Using the Reynolds number definition adopted here, Re = ρo V R2

ηo L , with R � 3 μm, and

ηo/ρo � 10−2 cm2/s (plasma kinematic viscosity), one obtains Re ∼ 0.1. When geometry suddenly
changes (bifurcations, etc.) velocity gradients are enhanced resulting in much higher transient inertial
effects. Furthermore, it is believed that the viscosity contrast of RBCs in vivo4 is close to (in the
Stokes limit) the critical value for the TT-TB transition. This idea would mean that inhibition of TB
should be favored by moderate inertial effects (Re ∼ 1).

Why should it be beneficial for RBCs to perform TT rather than TB at all? Our speculation is as
follows. Under an alteration of the flow due, for example, to a tissue injury, or caused by abnormal
widening of blood vessels (the so-called sites of aneurysms), RBCs tend to scrape along the blood
vessel lining. In the TT regime cells experience a lift force of hydrodynamical (viscous) nature.9, 14, 15

This force is essential to keep cells away from potential undesirable adhesion. However, RBCs which
undergo TB experience practically no lift force (due to the quasi-up-down symmetry over a period
of TB).16 Transient suppression of TB (at special sites undergoing sudden changes of flow condition,
where inertial effect is transiently amplified) would enable RBCs to be efficiently pushed away from
blood vessel walls. A systematic study dealing with 3D simulations including shear elasticity (to
mimic the RBC cytoskeleton) is an essential step in order to be more quantitative.

Vesicles would be a more adequate system in order to test the present finding, but also to check
the above speculations. Vesicles may be produced with large enough size, for example, with radius
in the range 20–40 μm. Imposing wall shear rates of about 8000 s−1 one finds Re � 3–15, where we
expect suppression of TB to be quite favorable. In a microfluidic channel of diameter L ∼ 100 μm,
with maximum velocity Vmax of the imposed Poiseuille flow, the wall shear rate is equal to 8Vmax/L.
Imposing a maximum velocity of order 10 cm/s (for which high speed camera are well adapted
to capture vesicle dynamics with a good precision), one easily obtains shear rates of the order
of 104 s−1.

Note added in proof. After this work was completed we found on the website a preprint by D.
Salac and M. Miksis treating the problem of vesicles with a level set method.17
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