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a b s t r a c t

A mechanical equilibrium equation of a vesicle membrane under a generalized elastic bending energy
is obtained in this paper. Moreover, the derivation of this equilibrium equation is based on some shape
optimization tools. This approach is new and more concise than the tensorial tools used previously for
this problem.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Phospholipid membranes are abundant in biology. They
represent the major component of the cytoplasmic membrane of
real cells. They are also presentwithin the cell cytoplasm (e.g. Golgi
apparatus, a complex assembly of phospholipid layers which
serve to form small vesicles for protein transport). Phospholipid
membranes are also used inmany industrial applications (e.g. giant
liposome emulsions for cosmetics). Pure phospholipid vesicles (a
closed membrane suspended in an aqueous solution) constitute
an attractive model system in order to describe mechanical and
viscoelastic behaviors of many cells, like red blood cells. They are
also regarded as promising drug carriers for a delivery at specific
sites in the organisms. This explains the increasing interest for
biological membranes from various communities ranging from
biology to applied mathematics. This contribution is concerned
with a certain aspect ofmathematicalmodeling of vesicles, ormore
generally of phospholipid membranes.
Vesicles are formed by amphiphilic molecules self-assembled

in water to build bilayers, in a certain range of concentration and
temperature. Several experimental and theoretical studies have
focused on the configuration and equilibrium shapes of vesicles
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(for a review on equilibrium shapes see [1,2]), and on the effect
of flow see a recent review [3]).
At room, as well as at the physiological temperature, the

membrane is fluid (a two dimensional incompressible fluid). Due
to incompressibility, the main mode of deformation of a vesicle
is bending. A basic ingredient for biomembranes is thus bending
energy. Helfrich [4] introduced a model in which the cost in
bending energy is given by

kc
2

∫
Γ

(H − H0)2 ds+
kg
2

∫
Γ

K ds, (1)

where H = κ1 + κ2 is the mean curvature of the membrane
surface, κ1 and κ2 are the principle curvatures, K = κ1κ2 is
the Gauss curvature and H0 represents the spontaneous curvature
that describes the asymmetry effect of the membrane or its
environment. The membrane surface is denoted by Γ while Ω
represents the inside volume of the vesicle, such that Γ = ∂Ω .
The integrals are performed along the membrane surface where
ds denotes a surface area, while, in this paper, dx will represent a
volume element. The constants kc and kg have the dimension of
an energy and represent the bending modulus and the Gaussian
curvature modulus, respectively. The second term in the Helfrich
model is a topological invariant by the virtue of the Gauss–Bonnet
theorem that says if one is not interested in change of topology,
then this contribution is a constant and can be ignored. We
shall disregard in the energy the contribution coming from Gauss
curvature, since we do not account for topological changes.
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The equilibrium shape of vesicle membranes is determined
by minimizing the bending energy subject to two constraints:
fixed volume (incompressible enclosed fluid) and fixed area
(inextensible membrane). It is a shape optimization problem that
writes in the saddle point formulation1 where the Lagrangian2 L is

L(Ω; σ , p) =
∫
Γ

f (H) ds+ σ
(∫

Γ

ds− A0

)
+ p

(∫
Ω

dx− V0

)
. (2)

The scalars σ and p are Lagrange multipliers, and can be viewed as
an effective surface tension and pressure difference, respectively.
They enforce constant area A0 and constant volume V0 of the vesi-
cle, respectively. The Helfrich energy has been generalized by in-
troducing f , an arbitrary smooth function defined in R. Notice that
the classical case corresponds to the choice f (H) = kc

2 (H − H0)
2.

The notion of saddle point can be intuitively understood as
follows.Wewould like the energy to beminimal (or L to beminimal
with respect to shape variation) and that at the same time L should
behave with respect to σ and p in a such a way to be maximum,
so that to enforce constant volume and area (i.e. to suppress the
terms proportional to σ and p in L).
Since L is differentiable, any saddle-point (Ω; σ , p) of L satisfies

three conditions:
∂L
∂Ω

(Ω; σ , p) = 0,
∂L
∂σ
(Ω; σ , p) = 0 and

∂L
∂p
(Ω; σ , p) = 0. (3)

The two last conditions leads directly to the area and volume
constraints, respectively. Thus looking for zeros of derivatives with
respect to Lagrange multipliers is equivalent to imposing the two
constraints. The aimof this paper is to show that the first condition,
that involves the shape derivative ∂/∂Ω , leads to:

p+ σH + f (H)H + (2K − H2)f ′(H)−∆s(f ′(H)) = 0. (4)
Notice that the choice f (H) = kc

2 (H − H0)
2 leads to the classical

equilibrium condition:

p+ σH + kc

(
1
2
(H − H0)[4K − H(H + H0)] −∆sH

)
= 0 (5)

where ∆s is the surface Laplacian (known also as the Laplace–
Beltrami operator), and will be defined explicitly in this paper.
The result (5) was first derived in [4], relation (31). Notice
that these authors used the same notation H for −(κ1 +
κ2)/2, i.e. minus half of the present definition of the mean
curvature H = κ1 + κ2. In that paper use of several
concepts of differential geometry were evoked (first and second
fundamental forms) in order to arrive to the final result. Similar
concepts were used (in a somewhat more general manner by
using quite involved knowledge in differential geometry like the
Gauss–Godazzi–Mainardi and Gauss–Weingarten equations) in
Ref. [5] in order to derive the shape equation. The calculation was
exemplified for the Helfrich energy and extended to a functional of
the form Hn (where n is any integer).
Themain objective of this paper is to provide a derivationwhich

is concise and self-contained. Our derivation uses quite simple and
classical notions. While we will, in passing, quote some known

1 For a mathematical point of view, the saddle point problem is written as: find
(Ω, σ , p) such that

inf
Ω⊂R3

sup
σ ,p∈R

L(Ω; σ , p).

2 Splitting the couple of variables (σ , p) from the variableΩ is a customary rule
inmathematical literature in order to emphasize the fact that the two set of variable
have different roles.
Fig. 1. Schematic view of the geometry. δ, the distance function, is positive for x
outsideΩ and negative inside. This is the signed distance.

expressions and Lemma in the mathematical literature, we shall
provide their direct derivation here. Our derivation can be made
general without specifying the functional expression f (H). We
shall discuss in the conclusion when generalized functionals can
be expected to arise.
The paper is organized as follow: the second section introduces

some notations and preliminary results while the third one
aim at obtaining the equilibrium condition for the generalized
expression (2) of the Helfrich energy. The paper is completed by
a mathematical Appendix.

2. Notations and preliminary results

All surface operators used in this paper are defined here. Let n
denotes the unit outward normal vector to the shape Ω . Let f be
any scalar function and v be any vector field. The surface gradient,
the surface divergence and the Laplace–Beltrami operator are
respectively expressed by:

∇sf = (I− n⊗ n)∇f = ∇f − (n.∇f )n, (6)
∇s.v = (I− n⊗ n) : ∇v = ∇.v− ((∇v).n).n, (7)
∆sf = ∇s. (∇sf ) . (8)

The boundary Γ is then parametrized by a level set function δ,
defined, for all x ∈ R3, as a signed distance (see Fig. 1):

δ(x) =

{ inf
y∈Γ
|y− x| when x 6∈ Ω,

− inf
y∈Γ
|y− x| otherwise.

Then, the normal expresses as a gradient:n = ∇δ (since |∇δ| = 1).

Let us now express the mean and the Gauss curvatures. Let
A = ∇sn. Its characteristic polynom writes:

PA(λ) = det(A− λI) = −λ3 + I1λ2 − I2λ+ det(A),

where I1 = Aii and I2 = (AiiAjj − AijAji)/2 (repeated indices
convention is used), are two invariants; see below.
Let us first show that A = ∇sn = ∇n. From the definition (6) of

∇s, it is equivalent to show that n.∇n = 0. On the one hand, since
|n|2 = 1, we have ∇(n.n) = 0. On the other hand, by expansion
we have ∇(n.n) = 2(n.∇)n + 2n ∧ rot(n). Then (n.∇)n =
−2n∧rot(n). Next, sincen = ∇δ, we have rot(n) = rot(∇δ) = 0.
Finally n.∇n = 0 and then A = ∇n.
Moreover, from definition of A, it is also the Hessian of the

level set function: A = (∇ ⊗ ∇)δ. Thus A is symmetric and
admits three real eigenvalues. Since n.∇n = n.A = 0, A has a
zero eigenvalue, associated to the eigenvector n. Let us denote κ1,
κ2 the two others eigenvalues of A. There exists an orthonormal
eigenvector system (e1, e2,n) associated to (κ1, κ2, 0) such that
A = κ1e1 ⊗ e1 + κ2e2 ⊗ e2. By definition [6, p. 47], the values
κ1 and κ2 are called the principle curvatures and the vectors e1
and e2, the principle directions of curvature. The mean curvature
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and the Gauss curvature are, by definition H = κ1 + κ2 and K =
κ1κ2, respectively. Notice that as coefficients of the characteristic
polynom, they are invariant by any change of basis, and thus in
the eigensystem we find: I1 = H and I2 = K . Going back to the
definition of I1 and I2 in terms of A = ∇n leads to the following
expression of the mean and the Gauss curvatures:

H = ∇s.n = ∇.n and 2K = H2−∇n : ∇nT . (9)

Notice that the use of the level set function δ enables us to extend
the quantities n,H and K in thewholeR3 spacewhile their original
definitions was introduced only on the surface Γ .

3. Obtaining the equilibrium equation

For any sufficiently regular shape deformation u, we denote
Ωu = (I + u)(Ω) = {x + u(x) ∈ R3; x ∈ Ω} the deformed shape
(see Fig. 2).
Let us denote by E(Ω), A(Ω, σ ) and V (Ω, p) the first, second

and third terms of the right-hand side in (2), respectively. From
Lemma A.1 derived in Appendix A, we get:

∂V
∂Ω

(Ω, p)(u) = p
∫
Γ

u.n ds. (10)

Again, from Lemma A.1:

∂A
∂Ω

(Ω, σ )(u) = σ
∫
Γ

H u.n ds. (11)

The rest of the paragraph deals with the E(Ω) term. From
Lemma A.2 derived in the Appendix, we obtain:

∂E
∂Ω

(Ω)(u) =
∫
Γ

∂ f (H)
∂Ω

(Ω)(u) ds

+

∫
Γ

(
f (H)(Ω)H +

∂ (f (H)) (Ω)
∂n

)
u.n ds, (12)

where ∂/∂n = n.∇ denotes the directional (or normal) derivative.
The normal n, which also depends on the shapeΩ is differentiable
and its shape derivative in any direction uwrites [7]: ∂n

∂Ω
(Ω)(u) =

−∇s(u.n). This expression can be derived by considering a
particular elementary local displacement u = vdt of the interface
Γ , where v is the velocity. Recall that the level set function satisfies
at each time δ(t, x(t)) = 0, so that δ(t+dt, x(t+dt)) = 0, and the
difference of δ between t + dt and t divided by dt (which defines
the material derivative D/Dt) is also zero, and this yields (upon a
Taylor expansion with respect to dt)

Dδ
Dt
=
dδ
dt
+ v.∇δ = 0.

Then we get the following expression for dδ (upon multiplication
of the above equation by dt on both sides) of the level set function:

dδ = −∇δ.u (13)

where dδ represents an elementary local displacement of the
shape.
The shape derivative of the normal is given by the Fréchet dif-

ferentiation of n = ∇δ(x)
|∇δ(x)| , in the direction dδ, since the propriety

|∇δ(x)| = 1 for all position x in R3 is not preserved if the displace-
ment dδ is applied. Consequently, using (13), the shape derivative
(see also foot note for the shape derivative along direction u) of
n = ∇δ(x)

|∇δ(x)| is given by

∂n
∂Ω

(Ω)(u) = lim
ε→0

n(δ + εdδ)− n(δ)
ε

=
∇(−u.∇δ)
|∇δ|

−
[∇(−u.∇δ).∇δ]∇δ

|∇δ|3
. (14)
By considering the elementary local displacement dδ, we have
|∇δ(x)| → 1 when ε→ 0, and hence
∂n
∂Ω

(Ω)(u) = −∇(u.n)+ [n.∇(u.n)]n.

Then,

∂n
∂Ω

(Ω)(u) = −∇s(u.n). (15)

This result can be shown otherwise (see [8, eq. A7]) by following
a phase-field approach. Note at this point that an interesting
derivation of the final result (4) has been given recently [9,10]
without taking the limit |∇δ(x)| → 1. In [8] (see their Appendix A)
only the Helfrich energy was considered and not the generalized
one, as done in [9,10]. The same type of derivation as the phase
field one has been given by using a level set approach [11]. Finally,
another work is worth of mention [12] where a thermodynamical
consistent derivation of a phase field approach arrived to the same
conclusion.
From H = ∇.n, we obtain ∂H

∂Ω
(Ω)(u) = −∇. [∇s(u.n(Ω))] and

then:
∂ f (H)
∂Ω

(Ω)(u) = f ′(H)
∂H
∂Ω

(Ω)(u)

= −f ′(∇.n) ∇.[∇s(u.n)].
Next, (12) leads to:
∂E
∂Ω

(Ω)(u) =
∫
Γ

f (H)(Ω)H u.n ds

+

∫
Γ

f ′(H)
∂H
∂n

u.n ds−
∫
Γ

f ′(H)∇. [∇s(u.n)] ds. (16)

Let us denote by T the last term of the right-hand side. Then,

T = −
∫
Γ

f ′(H)∇. (∇s(u.n)) ds

=

∫
Γ

∇s(u.n).∇(f ′(H)) ds−
∫
Γ

∇.
(
f ′(H)∇s(u.n)

)
ds. (17)

• Simplification 1. Recall that, for any tangential vector field vT,
the Stokes theorem over the closed surface Γ yields∫
Γ

∇s.vT ds = 0. (18)

We chose vT = f ′(H)∇s(u.n). By (7) and (18), we have∫
Γ

∇.vT ds−
∫
Γ

(∇vT.n) .n ds = 0. (19)

Using the summation of repeated indices convention, we have:

(∇vT.n) .n = ninj∂jvTi = nj∂j(nivT i)− vT inj∂jni.
Since n.∇n = 0 (see Section 2) we get:
(∇vT.n) .n = n.∇(n.vT)− vT. [(n.∇)n] = 0.
Consequently,∫
Γ

∇.
(
f ′(H)∇s(u.n)

)
ds = 0. (20)

Recall that, for any scalar function g and any vector field v
defined over the closed surface Γ , we have the following identity
(see Appendix C):∫
Γ

∇sg.v ds = −
∫
Γ

g ∇s.v ds+
∫
Γ

g v.nH ds.

With g = u.n and v = ∇(f ′(H)), using (20), we get:

T = −
∫
Γ

∇s.
(
∇(f ′(H))

)
u.n ds+

∫
Γ

∂(f ′(H))
∂n

H u.n ds. (21)
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Fig. 2. Representation of the deformed domainΩu = (I+ u)(Ω).
Then (16) becomes:

∂E
∂Ω

(Ω)(u) =
∫
Γ

(
f (H)H + f ′(H)

∂H
∂n
+
∂(f ′(H))
∂n

H

−∇s.
[
∇(f ′(H))

] )
u.n ds. (22)

This completes our derivation, in principle. However, some useful
simplifications can be made, as shown below.
• Simplification 2. Using the summation of repeated indices

convention, we have:
∂H
∂n
= n.∇ (∇.n) = ni∂i∂jnj = ∂j

(
ni∂inj

)
− ∂inj∂jni

= ∇. ((n.∇)n)−∇n : ∇nT .

Next, using expression (9) of the Gauss curvature K , we obtain:

∂H
∂n
= 2K − H2 +∇. [(n.∇)n] .

Finally, since n.∇n = 0 (see Section 2) we get:

∂H
∂n
= 2K − H2. (23)

• Simplification 3. From (6) we have:

−∇s.
{
∇(f ′(H))

}
= −∇s.

{
∇s(f ′(H))+

(
n.∇(f ′(H))

)
n
}

= −∆s(f ′(H))− (n.∇s)
{
n.∇(f ′(H))

}
− (n.∇)(f ′(H)) (∇.n).

Notice that, from definition (6) of ∇s, we have n.∇s = 0 and then:

−∇s.(∇(f ′(H))) = −∆s(f ′(H))−
∂(f ′(H))
∂n

H. (24)

Using the two simplifications (23) and (24), relation (22) becomes:

∂E
∂Ω

(Ω)(u) =
∫
Γ

{f (H)H + f ′(H) (2K − H2)−∆s(f ′(H))}u.n ds.

Finally, using relation (10), (11), the previous relation leads to:

∂L
∂Ω

(Ω; σ , p)(u) =
∫
Γ

{f (H)H + f ′(H) (2K − H2)

−∆s(f ′(H))+ p+ σ H}u.n ds. (25)

This last expression leads directly to the equilibrium condition (4).

4. Conclusion and discussion

We have provided a new and self-contained derivation of the
force for a biological membrane. We have extended the derivation
to a generalized expression of the functional f (H). The Helfrich
energy can be motivated by assuming that the stretching energy
is of harmonic type (the energy is proportional to the square of
change of distance from a certain configuration). In more complex
situations, like red blood cells for example, this assumption is
not obvious, in that a nonlinear constitutive law may constitute a
better approximation. We must make a clear distinction between
the bending modes and the in-plane shear modes. Bending modes
arise both for vesicles and RBCs. When their membrane is bent
this implies a small stretching of the membrane (say a change in
the natural distance between molecules). For simplicity, consider
a small infinitesimal portion of the membrane in two dimensions
(the membrane is a line). The membrane has a width ε (distance
between the internal and external layer of the membrane). The
change in distance of that portion costs an energy (per unit area)
k1(`1−`10)2/2+k2(`1−`10)2/2 (harmonic approximation) were
k1 and k2 are ‘‘spring’’ constants (per unit area) of the internal
and external layers of the membrane, `1 and `2 are the actual
length of the external and internal portion of the membrane,
and `10 and `20 their natural equilibrium lengths. It is then a
simple matter to show [13,2] that this energy can be rewritten
as κ(H − H0)2/2 with κ = (k1 + k2)(`ε/2)2 where ` is the
natural length of the neutral surface. It is then clear that the
Helfrich energy follows from the local (i.e. at a given local region of
the membrane) harmonic approximation. This type of reasoning
is appropriate for pure vesicle membranes. In a more complex
situations as is the case probably with a RBCs, and with other
entities or tissues where the local constitutive law is not harmonic,
the harmonic approximation may attain its limit of validity. For
example if bending is limited by stretching of the cytoskeleton, or
by a complex network the energy can exhibit non harmonic effects.
In a network with macromolecules often entropic contribution
of stretching of the network is important. In that case the force
is a nonlinear function of change of distances (the energy is not
harmonic) [14]. In that case, following the above type of analysis
the effective bending energy will also exhibit terms which are not
quadratic in H , which is the situation treated here.
The bending force is obtained upon variation of the effective

energy with respect to shape, the topic of the present paper. Of
course, in addition to bending modes, shear modes in the planes
can be excited, and the bending energy must be supplemented
with the corresponding contributions. The full force would be the
sum of the force derived here plus a shear force arising from
the variation of the energy with respect to the two variables
representing the membrane in-plane displacement.
Another, perhaps more frequent, situation is that where

macromolecules (like proteins) interact with a membrane [15].
The Helfrich energy kc/2

∫
Γ
(H − H0)2ds should be supplemented

with a term of the form
∫
Γ
F(c) where F is certain function of

protein concentration. In addition, H0 (the spontaneous curvature)
is generally a c-dependent function (see [15]). The total energy
takes the form

J =
kc
2

∫
Γ

(H − H0)2ds+
∫
Γ

F(c)ds. (26)

Minimisation of the full energy with respect to c leads to

F ′(c)− kc(H − H0)H ′0(c) = 0. (27)
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Solving for c yields, generically a nonlinear relation between c and
H , and reporting the result into the original energy amounts to
minimizing a generalized functional of the form

∫
Γ
f (H), that is an

expression of the form dealt with in this paper.
Suppose, as a way of example, that F is a quadratic function of

c , F = α(c− c0)2/2, where c0 is some natural equilibrium concen-
tration in the absence of coupling with bending modes and α is a
positive parameter. Consider, in order to fix idea, the case where
H0 is a linear function of c , H0 = S0(1 + βc), where S0 is the nat-
ural spontaneous curvature in the absence of adsorbed molecules.
From Eq. (27) one gets c = a + bH with a = c0 − kcS20β(1 +
βc0)/[α+kc(βS0)2] and b = kcS0β/[α+kc(βS0)2]. Reporting into
the energy (26) one obtains an effective energy (up to an additive
constant, which is unimportant for our purposes) given by

J =
k̄c
2

∫
Γ

(H − S̄0)2ds (28)

where the energy has the form of the Helfrich one with renormal-
ized bending modulus and spontaneous curvature given by k̄c =
kc(1 − S0βb)2 + αb2 > 0 and S̄0 = [αb2S0(1 + βc0) + kcS0(1 +
βa)(1− S0βb)]/k̄c . This agrees with the result of Leibler [13]. The
situation is different formore general functions F(c). Typical exam-
ples are found in the study in biological membranes coupled with
a concentration field (see [16] and references therein), where the
functional F(c) contains cubic and quartic terms in c. If the depen-
dence with c were not quadratic (say if it contains quartic terms
or terms of higher order) then by repeating the above example we
would then have an effective energy (after elimination of c) that
has the form

∫
Γ
f (H). The derivation presented here can then be

used to determine the effective bending force.
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Appendix A. Some shape optimization tools

The notion and basic tools of shape derivative [17,7,18] is
recalled in this Appendix. Starting from a smooth reference open
set Ω , with boundary Γ = ∂Ω , we consider domains of the type
Ωu = (I+ u)(Ω) (see Fig. 2) with I denotes the identity in R3 and
u is any sufficiently regular vector field.

Definition A.1. The shape derivative of J(Ω) versus Ω is defined
as the Fréchet derivative at u = 0 of u→ J ((I+ u) (Ω)), i.e.3

J ((I+ u) (Ω)) = J (Ω)+
∂ J
∂Ω

(Ω) (u)+ o(u)

with lim
u→0

‖o(u)‖
‖u‖

= 0,

where ∂ J
∂Ω
(Ω) (u) is linear and continuous with respect to u and

where ‖.‖ denotes the usual Euclidean norm in R3.

Lemma A.1. Considering a smooth bounded open set Ω ∈ R3 and
f (x) a smooth function defined in R3. Define

Jvol(Ω) =
∫
Ω

f (x) dx and Jsurf (Ω) =
∫
Γ

f (x) ds.

3 This is nothing but a Taylor expansion and where ∂ J
∂Ω
(Ω) (u) can also be

alternatively written as u.∇Ω J(Ω) (this is the shape directional derivative along
the displacement direction u).
These two functions are shape differentiable at Ω and

∂ Jvol
∂Ω

(Ω)(u) =
∫
Γ

f (u.n) ds and

∂ Jsurf
∂Ω

(Ω)(u) =
∫
Γ

u.n
(
∂ f
∂n
+ Hf

)
ds,

for any u smooth enough, where H is themean curvature of Γ defined
by H = ∇.ñ and ñ is the local extension of the normal n near Γ .

Lemma A.2 (When the Integrand Depends on the Shape). Let us
consider a smooth bounded open set Ω ∈ R3 and f (Ω, x) a smooth
function defined in R3 depending also on the domain. Define

J(Ω) =
∫
Γ

f (Ω) ds.

This function is shape differentiable at Ω regarding Fréchet and, for
any smooth function u, we have:

∂ J
∂Ω

(Ω)(u) =
∫
Γ

(
∂ f
∂Ω

(Ω)+ u.n
(
∂ f (Ω)
∂n
+ Hf (Ω)

))
ds.

The next part is intended to give a simple derivation of
the Murat–Simon expressions: Lemmas A.1 and A.2, in the two
dimensional case.

Appendix B. On a simple derivation of the above announced
lemma

Let us start with a two dimensional problem (the boundary is a
line)

J(Ω) =
∫
Γ

f (x)d`

d` is the curvilinear coordinate, and f is a function which does
not depend explicitly on the form, but only on x which is a 2D
vector field. Of course x is evaluated at the boundary, since the
integral is along the boundary. We have d` = dα

√
g , where α

is a parametrization of a curve (for example if x(α) is parametric
representation of a curve, then g = x′2, where prime denotes
differentiation with respect to argument). We can thus write

J(Ω) =
∫
Γ

f (x)
√
gdα. (29)

Since now integration is performed on the parameter α which
does not depend on the curve (think of time parametrizing a
trajectory!), the variation of J with the shape acquires the simple
Euler–Lagrange derivative

R ≡
δJ
δx
=
∂(f
√
g)

∂x
−
d
dα
∂(f
√
g)

∂x′
. (30)

R is nothing but the functional derivative of J (i.e. δJ
δx ),

4 but not yet
the force (see below). Expliciting out Rwe have

R =
√
g
∂

∂x
f − f

d
dα

∂

∂x′
√
g −

df
dα
∂
√
g

∂x′
.

We have ∂
√
g/∂x′ = x′/

√
g , d/dα(

√
g) = x′.x′′/

√
g , and

d/dα(x′/
√
g) = [x′′

√
g − x′(x′.x′′)/

√
g]/g . Using the result r ′ =

√
gt (coming from the very definition of the tangent vector t), and

t′ = −Hn
√
g , we easily find

R =
√
g
[
Hf n− t

∂ f
∂`
+
∂ f
∂x

]
.

4 Note that the relation between the shape derivative used previously and the
functional derivative written in this Appendix is ∂ J

∂Ω
(Ω)(u) =

∫
Γ
u.n δJ

δx dα.
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By the definition of the functional derivative we have from (29)
and (30)

δJ =
∫
Γ

Rδxdα =
∫
Γ

R
√
g
δxd`

where δx designates a displacement (or variation) of the shape. The
force applies to the real elementarymaterial d` and not to the ficti-
tious parametrization dα. This implies from the above relation that
the total force is R/

√
g (i.e. the quantity which multiplies d` (see

also [19,20]). Note that since we confine ourselves to two dimen-
sions, the force is defined per unit length (along the direction along
which the membrane is supposed to be translationally invariant).
The force applied on the membrane reads thus (from (30)

divided by
√
g and by noting that −t ∂ f

∂`
+

∂ f
∂x defines the normal

derivative)[
Hf n+

∂ f
∂n

n
]

since only the normal enters, this means that only normal motion
matters. If u is displacement, the variation with respect to the
form acquires the factor u.n. This is the so-called Murrat-Simon
expression (see Lemma A.1). We can reconsider that f depends
on shape (actually on x′, x′′ etc.), we find trivially the generalized
expression which contains derivative with respect to form (see
Lemma A.2). Extension to 3D is elementary.

Appendix C. The Green formula with surface operators

The Green formula with surface operators is derived in this
Appendix. Let any scalar function g and any vector field v defined
over the closed surface Γ , n is the unit outward normal vector
defined as a signed distance function like in the part 2. By (6), we
have∫
Γ

∇sg.vds =
∫
Γ

∇g.vds−
∫
Γ

(∇g.n) (v.n) ds. (31)

We have∫
Γ

∇g.vds = −
∫
Γ

g∇.vds+
∫
Γ

∇.(gv)ds. (32)

Using (7), (32) gives∫
Γ

∇g.vds = −
∫
Γ

g∇s.vds−
∫
Γ

g (∇v.n) .nds

+

∫
Γ

∇.(gv)ds. (33)

By (7), the last term in (33) can be written as∫
Γ

∇.(gv)ds =
∫
Γ

∇s.(gv)ds+
∫
Γ

[∇(gv)n] .nds. (34)

By the Stokes theorem over the closed surface Γ (18),∫
Γ

∇s.(gv)ds =
∫
Γ

∇s. [g(v.n)n] ds. (35)
By (34) and (35)∫
Γ

∇.(gv)ds =
∫
Γ

(∇.n)gv.nds+
∫
Γ

[∇(gv)n] .nds. (36)

Using the summation of repeated indices convention, we have:

[∇(gv)n] .n = ninj∂j(gvi) = ninjg∂jvi + ninjvi∂jg.

Thus,

[∇(gv)n] .n = g [∇v.n] .n+ (n.v)(n.∇g). (37)

Combining the results (31)–(33), (36) and (37), we obtain∫
Γ

∇sg.vds+
∫
Γ

g∇s.vds−
∫
Γ

g(∇.n)v.nds = 0.
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