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The numerical simulation of the deformation of vesicle membranes under simple shear
external fluid flow is considered in this paper. A saddle-point approach is proposed for
the imposition of the fluid incompressibility and the membrane inextensibility constraints,
through Lagrange multipliers defined in the fluid and on the membrane respectively. Using
a level set formulation, the problem is approximated by mixed finite elements combined
with an automatic adaptive mesh procedure at the vicinity of the membrane boundary.
Numerical experiments show that this combination of the saddle-point and adaptive mesh
method enhances the robustness of the method. The effect of inertia on the stability of the
vesicle in a shear flow is also investigated.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Phospholipid membranes are abundant in biology. They represent the major component of the cytoplasmic membrane
of real cells. They are also present within the cell cytoplasm, e.g. the Golgi apparatus, a complex assembly of phospholipid
layers which serve to form small vesicles for protein transport. Phospholipid membranes are also used in many industrial
applications, as in giant liposome emulsions for cosmetics. A simple closed membrane of pure phospholipid suspended in an
aqueous solution, also called a suspension of vesicles, constitute an attractive model system in order to describe mechanical
and viscoelastic behaviors of many cells, like red blood cells. They are also considered as promising drug carriers for a
delivery at specific sites in the organisms. This explains the increasing interest for biological membranes from various
communities ranging from biology [48,55] to applied mathematics [6,29,52]. This contribution is concerned with a certain
aspect of mathematical modeling of vesicles, and more generally of phospholipid membranes.

Vesicles are formed by amphiphilic molecules self-assembling in water to build bilayers, in a certain range of con-
centration and temperature. At room, as well as at the physiological temperature, the membrane is a two dimensional
incompressible fluid. Due to incompressibility, the main mode of deformation of a vesicle is bending. A basic ingredient for
biomembranes is thus bending energy. Canham [13] and Helfrich [25,43] introduced the following expression of the bending
energy:

k

2

∫
Γ

(H − H0)
2 ds + kg

2

∫
Γ

K ds, (1)
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where H = H1 + H2 is the total curvature of the membrane surface, with H1 and H2 are the principle curvatures and
K = H1 H2 is the Gauss curvature. The membrane surface is denoted by Γ while Ω represents the volume inside the
vesicle, such that Γ = ∂Ω . The integrals are performed along the membrane surface where ds denotes a surface area, while,
in this paper, dx will represent a volume element. The constants k and kg have the dimension of an energy and represent
the bending modulus and the Gaussian curvature modulus, respectively. Here, H0 denotes the spontaneous curvature that
describes the asymmetry of the membrane. In this paper, H0 = 0, since H0 is relevant only for three-dimensional problems
(see Appendix A) and we restrict ourself to the two-dimensional case in this paper. Finally, from the Gauss–Bonnet theorem,
the second term of the Canham–Helfrich energy (1) is a topological invariant. Since topological changes are not considered
in this paper, this second term is omitted.

Vesicles can be more or less inflated: the deflation could be due to osmotic effects, depending on additives in the
solution. It could also be due to thermal effects: the thermal expansion of phospholipids is greater than those of the water
inside the membrane, and thus, the area A0 of the vesicle increases more rapidly than its volume V 0. In three dimension,
the reduced volume, denoted by γ , measures the deflation:

γ = 3V 0

4π
×

(
4π

A0

)3/2

∈ ]0,1]. (2)

Thus, γ compares the vesicle volume V 0 with the volume of a sphere having the area equal to A0: γ is a dimensionless
number, that equals to 1 when the vesicle is a sphere and is lower than 1 otherwise. For instance, for the human red blood
cell γ ≈ 0.64. By varying γ , the shape that minimizes the energy of curvature can vary from an ellipsoid stretched to a
biconcave shape, towards forms varied as that of the Peanut. In the two-dimensional case, V 0 and A0 denotes the area and
the perimeter respectively. The reduced area γ compares the area of the vesicle with the area of a circle having the same
perimeter as the vesicle. The reduced area is expressed in the two-dimensional case by:

γ = V 0

π
×

(
2π

A0

)2

.

For a circle, the reduced area equals to 1. The membrane could be considered as inextensible. In order to satisfy this
inextensibility constraint, two approaches are commonly available. The first one use the penalty approach, together with a
penalty parameter (see e.g. [15,18]): the inextensibility constraint then is not exactly satisfied and the approximate solution
depends upon the penalty parameter. Recently, Kim and Lai [32] proposed a penalty immersed boundary method to simulate
the dynamics of inextensible vesicle. A virtual force is introduced in order to take into account the inextensibility constraint.
The second solution introduces a Lagrange multiplier, that is interpreted as the surface tension of the membrane, and the
inextensibility constraints is exactly satisfied. In the present work, the second solution was selected, since it avoids the
dependence of the solution upon the penalty parameter. This formulation based on Lagrange multipliers is of common use
for incompressible fluid flow applications (see e.g. [51]).

Furthermore, for general interface fluid flow problems, there are two main classes of numerical methods usually used:
the class of Lagrangian methods based on an explicit interface parameterization and discretization while the class of Eulerian
methods uses an implicit function. The popular phase field and level set methods fall into this second class.

For Lagrangian methods, the interface, which represents the biological membrane, is discretized by a set of points which
are moved with a speed depending on the studied problem. For the computation of static vesicle shapes, the classical
finite element method has been extensively used for surface reconstruction problems [4]. In [14,47] the authors proposed a
semi-implicit variational formulation (see also [28] for another semi-implicit approach in the context of capillary problems).
In [40], an augmented Lagrangian algorithm was introduced in order to enforce the volume and area conservation while
computing the static shape of a vesicle. In [9], the volume and area conservation constraints was enforced at the discrete
level to machine precision. For the dynamics of vesicles in interaction with a fluid, the mesh following the interface may
regenerate at each time step, while the boundary conditions between inside and outside volume of the interface could be
directly imposed on this explicit boundary. The older method used for vesicle fluid applications falls into this category:
the boundary element method transforms all viscous volume terms into surface integrals through a Green kernel and only a
surface mesh of the interface is required [45] (see also [46,8]). Nevertheless, inertia terms are not reducible to boundary
integrals and, despite some recent improvements, this approach suffers from some limitations. A more recent approach
involves both two meshes: the first is localized on the interface and the second is a volume mesh. When the volume mesh
is compatible with the interface discretization, the classical finite element method could be used [12]. A commonly used
variant fixes the volume mesh one time for all and expresses interface integrals on a discrete moving surface mesh: this is
the so called penalty immersed boundary method [32,34].

The Eulerian methods are characterized by the use of a meshing strategy that is independent of the movements of the
interface: this approach allows the use of fixed and fully structured volume mesh, and the surface mesh isn’t anymore
required to discretize the moving interface. Very complex shapes, with strong variations of the curvature and possible
topological changes becomes possible. In the case of a diffuse interface, as for fluid mixtures, the interface is represented
by a smooth transition zone. Indeed, at least at the molecular scale, there is a small zone of mixture between species. From
a numerical point of view, the diffuse interface notion could be interpreted as a way of regularization of a sharp interface,
together with a regularization parameter, associated to the interface width: this is the phase field method, introduced by Allen
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and Cahn [2], and applied recently to vesicles [19] and their fluid interactions [7,17]. Moreover, the level set method [42] is an
Eulerian approach that is able to catch sharp interfaces, where a transport equation is used to move the level set function
and to describe the interface motion. This method is widely used to model vesicle dynamics [16,41,49,50]. Nevertheless,
both phase field and level set methods suffer a lack of precision when dealing with the volume and area conservation
constraints. The aim of this paper is to present a new level set method that exactly solve these constraints at the discrete
level at machine precision: it extends to the vesicle dynamics a previous work on level set methods for the advection
equation [37].

We focus our attention on describing the dynamics of a single suspended vesicle in a linear shear gradient of a plane
flow. Vesicles in shear flow in the limit of the vanishing Reynolds number (also called the Stokes limit) have been the
subject of extensive studies [6]. Few works deals with the effect of fluid inertia on the dynamics of the vesicle: let us
mention the pioneers works of [39] and [49,50] that both observe a variation of inclination the angle of the vesicle under a
shear flow when the Reynolds number increases. In the present work, non-zero Reynolds numbers are considered and the
effect of inertia are more deeply investigated. This situation is of practical interest for red blood cells applications.

The outline of the paper is as follows. A saddle-point approach allows us to characterize the solution in a weak formu-
lation, which is discretized using mixed finite elements in Section 2. In Section 3 we focus on the numerical method. We
present our level set method formulation for the vesicle dynamics and show the finite element discretization as well the
advection mass preservation improvement. Section 4 is devoted to show numerical results illustrating the vesicle membrane
in the tumbling and the tank-treading regimes. Finally, the effect of the inertia terms is explorated and we show that,
beyond a critical value of the Reynolds number, the vesicle passes from a tumbling to a tank-treading regime.

2. Problem statement

2.1. Notations and preliminary results

Let Λ = ]−L, L[d be the bounded region containing the vesicle and the surrounding fluid, where L > 0 is the half domain
width. Numerical computations are performed in this paper with d = 2, while the mathematical formulation could be
extended to d = 3 with few modifications. Let T > 0: for any t ∈ ]0, T [, the membrane Γ (t) ⊂ Λ is the closed surface
defined by:

Γ (t) = {
(t, x) ∈ ]0, T [ × Λ;φ(t, x) = 0

}
, (3)

where φ is the level set function. By convention, the vesicle Ω(t) ⊂ Λ is the region where φ(t, .) is negative and we have
Γ (t) = ∂Ω(t).

Let u denote the velocity of the fluid in Λ. The membrane Γ (t) is transported at the same velocity, and thus, the level
set function satisfies:

Dφ

Dt
= ∂φ

∂t
+ u.∇φ = 0 in ]0, T [ × Λ, (4a)

where D/Dt denotes the material derivative. The previous transport equation is completed by suitable boundary and initial
conditions:

φ = φb on ]0, T [ × Σ−, (4b)

φ(0) = φ0 in Λ (4c)

where

Σ− = {
x ∈ ∂Λ;u.ν(x) < 0

}
(5)

is the upstream boundary and ν denotes the outward unit normal vector to the boundary ∂Λ. We remark that the solution
of Eq. (4a) is affected by the upstream boundary condition (4b) on Σ−; however it is not affected by the boundary condition
imposed downstream. Concerning the initial condition (4c), the function φ0 denotes the signed distance between x and the
given initial shape membrane ∂Ω(0):

φ0(x) =
{

inf{|y − x|; y ∈ ∂Ω(0)} when x /∈ Ω(0),

inf{−|y − x|; y ∈ ∂Ω(0)} otherwise.

Let n denote the unit outward normal vector to the shape Ω (see Fig. 1). Let f be any scalar function and v be any vector
field. The surface gradient, the surface divergence and the Laplace–Beltrami operator are respectively expressed by:

∇s f = (I − n ⊗ n)∇ f = ∇ f − (n.∇ f )n, (6a)

divs v = (I − n ⊗ n) : ∇v = div v − (
(∇v).n

)
.n, (6b)


s f = divs(∇s f ). (6c)
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Fig. 1. Notations for the vesicle interacting with a surrounding shear flow.

Here, ⊗ denotes the tensorial product of two vectors and the semicolon : is the two times contracted product between
tensors.

The mean and the Gauss curvatures can be expressed in terms of the normal n (see [36]):

H = ∇s.n = ∇.n,

2K = H2 − ∇n : ∇nT .

2.2. The dimensional problem

The problem can be written as:

find φ, u, p and λ such that

∂φ

∂t
+ u.∇φ = 0 in ]0, T [ × Λ, (7a)

ρ

(
∂u

∂t
+ u.∇u

)
− div

(
2η D(u)

) + ∇p = 0 in ]0, T [ × (Λ\∂Ω), (7b)

div u = 0 in ]0, T [ × Λ, (7c)

divs u = 0 on ]0, T [ × ∂Ω, (7d)

[u] = 0 on ]0, T [ × ∂Ω, (7e)

−k

{

s H + H

(
H2

2
− 2K

)}
n + Hλn − ∇sλ + [

2η D(u) − pI
]
.n = 0 on ]0, T [ × ∂Ω, (7f)

φ = φb on ]0, T [ × Σ−, (7g)

u = ub on ]0, T [ × ΣD , (7h)(
2ηD(u) − pI

)
.ν = 0 on ]0, T [ × ΣN , (7i)

φ(0) = φ0 in Λ, (7j)

u(0) = u0 in Λ. (7k)

Eq. (7a) expresses that the interface is transported by the fluid, and it is completed by the suitable boundary and initial
conditions (7g) and (7j) presented in the previous section, where the upstream boundary Σ− (5) depends on the flow
velocity u. Notice that the conservation of momentum (7b) is written in Λ\∂Ω , i.e. in Ω and its complementary Λ\Ω .
Here, D(u) = (∇u + (∇u)T )/2 is the symmetric part of the gradient of velocity tensor. The viscosity η is not constant over
Λ: it takes a constant value η0 outside the vesicle Ω(t) and a different constant value η1 inside the vesicle.

The unknown velocity field must satisfy two constraints: the fluid mass conservation (7c) and the membrane inexten-
sibility (7d). The mass conservation reduces to the divergence-free condition div u = 0 since the density, denoted by ρ , is
supposed to be constant. Conversely, the membrane inextensibility is written locally as divs u = 0.

On ∂Ω , [.] denotes the jump of a quantity across ∂Ω in the normal direction n. Eq. (7e) expresses the continuity of the
velocity across the interface. The jump term in (7f) expresses the balance with membrane strengths. Indeed, the first normal
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term comes from the Canham–Helfrich bending energy (1) and is not an obvious computation (see [36,43]), since ∂Ω(t)
and H depend implicitly upon u: it requires some advanced shape optimization tools. This bending energy being a purely
geometrical quantity, it cannot give rise to a tangential strength: any tangential movement of points on a surface is only
modifying their positions without affecting the shape of the surface and its curvature energy. The second and third terms
in (7f) involves the Lagrange multiplier λ (the surface tension), and is defined on the membrane ∂Ω(t). The second term is
normal and it is similar to the strengths of capillarities engendered by the surface tension when modeling the dynamics of
drops. The term ∇sλ is tangential and its action is known as the Marangoni effect.

The unknown level set φ and velocity field u satisfy some boundary and initial conditions.
The boundary ΣD = ]−L, L[d−1 × {−L, L} is associated to the Dirichlet boundary condition ub(t, x), expressed for a shear

flow by:

ub(t, x) =
{

V when xd = L,

−V when xd = −L

for all (t, x) ∈ ]0, T [ × ΣD . Here, V denotes the given shear velocity at the box boundary (see Fig. 1). Conversely, ΣN =
{−L, L}d−1 × ]−L, L[ is associated to a Neumann-type boundary condition.

2.3. Dimensionless problem

The characteristic length R0 of the vesicle is chosen equal to the radius of a sphere having the same surface as the
vesicle ∂Ω in the three dimensional case. In the two-dimensional case, it represents the radius of a circle having the same
perimeter as ∂Ω . The characteristic velocity U = V R0/L is chosen to be equal to the shear velocity at a distance R0 from
the center. The characteristic viscosity η0 is chosen as the viscosity of the exterior fluid.

The following four dimensionless numbers are introduced:

Re = ρR0U

η0
, Ca = η0 R2

0U

k
, α = R0

L
and β = η1

η0
.

The Reynolds number Re, as usual, expresses the ratio of inertia effects to the viscous ones. The capillarity number Ca
compares the strength of the imposed flow, η0U/R0, to the bending resistance of the membrane k/R3

0. The dimensionless
number α represents the confinement of the vesicle in the shear flow and β is the viscosity ratio. The initial shape ∂Ω(0)

is also characterized by a fifth dimensionless number: γ , the reduced area, already introduced in Eq. (2).
In the rest of the paper, only dimensionless quantities are used and, since there is no ambiguity, they are still denoted

with the same notations as the original quantities. The dimensionless version of the boundary condition for velocity is:

ub(t, x) =
{

1/α when xd = α,

−1/α when xd = −α.

A dimensionless viscosity function is also defined:

η∗(t, x) =
{

β when x ∈ Ω(t),

1 otherwise.

Then, the dimensionless problem is written with respect to the dimensionless variables and numbers. While equations in
the dimensionless problem are still similar to those in (7), only Eqs. (7b), (7f) and (7i) lead to the following ones

Re

(
∂u

∂t
+ u.∇u

)
− div

(
2η∗ D(u)

) + ∇p = 0 in ]0, T [ × (Λ\∂Ω), (8a)

− 1

Ca

{

s H + H

(
H2

2
− 2K

)}
n + H λn − ∇sλ + [

2η∗ D(u) − pI
]
.n = 0 on ]0, T [ × ∂Ω, (8b)(

2η∗D(u) − pI
)
.ν = 0 on ]0, T [ × ΣN (8c)

where the normal n = ∇φ/|∇φ| and the curvature H = divs n are expressed in term of the level set function.

2.4. Variational formulation

Let us introduce the following space of admissible velocities:

V(ub) = {
v ∈ (

H1(Λ)
)d;v = ub on ΣD

}
.

Eq. (8a) is multiplied by a test function v ∈ V(0) and then integrated by parts on Ω and Λ\Ω separately. Then, terms are
merged and we get:
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∫
Λ

Re
Du

Dt
.v dx −

∫
Λ

div
(
2η∗D(u) − pI

)
.v dx +

∫
∂Λ

{(
2η∗ D(u) − pI

)
.ν

}
.v ds

+
∫

∂Ω(t)

{[
2η∗ D(u) − pI

]
.n

}
.v ds −

∫
∂Ω(t)

∇sλ.v ds +
∫

∂Ω(t)

λ Hn.v ds

=
∫

∂Ω(t)

f.v ds

where I is the identity tensor and div is the divergence of a symmetric tensor, defined as the divergence of its row or
column vectors. We have introduced the material time derivative Du

Dt = ∂t u + u.∇u. The strength f appears in the right-
hand-side of the previous equation and it describes the minimization of the Canham–Helfrich energy; it is given by:

f = 1

Ca

{

s H + H

(
H2

2
− 2K

)}
n. (9)

However, the Gauss curvature writes K = 0 in the two-dimensional case and the force (9) reduces to: f = Ca−1(
s H +
H3/2)n. We assume to have enough regularity for the interface ∂Ω(t), e.g. C4(Ω), such that integrals involving f could be
well defined.

In order to deal with the integrals over ∂Ω(t), a generalization of the Green formula over the closed surface ∂Ω(t) is
used (see e.g. [36]):∫

∂Ω

∇sμ.v ds +
∫

∂Ω

μdivs v ds =
∫

∂Ω

μv.nH ds, ∀μ ∈ H
1
2 (∂Ω), ∀v ∈ H1(Λ). (10)

Eqs. (10) leads to the following variational formulation:

find u ∈ C0(]0, T [, L2(Λ)d) ∩ L2(]0, T [,V(ub)), p ∈ L2(]0, T [, L2
0(Ω)) and λ ∈ L2(]0, T [, H

1
2 (∂Ω)) such that∫

Λ

Re
Du

Dt
.v dx +

∫
Λ

2η∗D(u) : D(v)dx

+
∫
Λ

p div v dx +
∫

∂Ω(t)

λdivs v ds =
∫

∂Ω(t)

f.v ds, ∀v ∈V(0), (11a)

∫
Λ

q div u dx = 0, ∀q ∈ L2(Λ), (11b)

∫
∂Ω(t)

μdivs .u ds = 0, ∀μ ∈ H
1
2
(
∂Ω(t)

)
, (11c)

where the initial condition is u(0) = u0. Concerning the coupling with the level set problem, we recall that the interface
∂Ω(t) is given by (3), and it is described by using φ, which is solution of the transport problem (4a)–(4c) involving the ve-
locity vector u. Moreover, we remark that the stationary problem can be expressed as a minimization one: this formulation
is useful in order to understand the structure of the set of equations and the relations between the velocity field u and the
two Lagrange multipliers p and λ. Details on this formulation are provided in Appendix B.

3. Numerical methods

3.1. Time discretization and the characteristic method

The numerical computations are presented in the two-dimensional case, where the Gauss curvature K is null. Never-
theless, the method extends to three-dimensional case by including the computation of K in the Canham–Helfrich force.
Let 0 = t0 < t1 < t2 < · · · < tN = T be a subdivision of the time interval [0, T ] with a constant time step 
t = tn+1 − tn ,
n = 1,2, . . . , N . For n = 0, φ0 = φ0 represents the initial condition, and for any n � 1, the unknowns φn , un , pn and λn at
time step n are computed by induction, using values at previous time steps. The time discretization is performed by using
the method of characteristics: for any t > 0 and x ∈ Λ, the characteristic curve X(., x; t) passing at time t through x is
defined by the following ordinary differential equation:⎧⎨⎩

∂ X

∂t
(s, x; t) = u

(
X(s, x; t), t

)
, s ∈ ]0, T [,
X(t, x; t) = x.
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For any function ϕ(t, x), the total derivative Dϕ/Dt is expressed as:

Dϕ

Dt
(t, x) =

(
∂ϕ

∂t
+ u.∇ϕ

)
(t, x) = ∂

∂τ

(
ϕ

(
X(t, x;τ ), τ

))∣∣
τ=t .

Following Pironneau [44], this derivative is approximated by a first-order backward Euler scheme:

Dϕ

Dt

(
tn, x

) ≈ ϕ(tn, x) − ϕ(tn−1, Xn−1
1 (x))


t

where Xn−1
1 (x) = x−
tun−1(x) denotes the first-order forward Euler approximation of X(tn−1, x; tn). The time-discretization

of the transport equation (7a) leads to:

φn = φn−1 ◦ Xn−1
1 in Λ. (12)

Then, the vesicle shape at step n writes ∂Ωn = {x ∈ Λ;φn(x) = 0}. The, the inner volume is given by Ωn = {x ∈ Λ;φn(x) < 0}.
The dimensionless viscosity is also computed explicitly:

ηn∗ =
{

β when x ∈ Ωn,

1 otherwise.

Moreover, the normal nn and the mean curvature Hn are updated, as well as the differential operators (6) on the sur-
face ∂Ωn . Let g ∈ C3([0, T ]) denotes an arbitrary function, a second order Taylor expansion writes:

dg

dt
(t) = 3g(t) − 4g(t − 
t) + g(t − 2
t)

2
t
+O

(

t2).

Based on this approximation and following [51, Chap. 5], the time discretization of the inertia term is performed by using a
second order combined characteristic and finite difference discretization method. The second-order characteristics writes:

u∗ = 2un−1 − un−2,

Xn−1
2 (x) = x − 
tu∗(x) a.e. x ∈ Λ,

Xn−2
2 (x) = x − 2
tu∗(x) a.e. x ∈ Λ,

where u∗ represents a prediction by extrapolation of u at time tn . Collecting the elements above, the problem becomes:

find un , pn and λn such that

Re

2
t

(
3un − 4un−1o Xn−1

2 + un−2o Xn−2
2

) − div
(
2ηn∗ D

(
un)) + ∇pn = 0 in Λ\∂Ωn, (13a)

div un = 0 in Λ, (13b)[
un] = 0 on ∂Ωn, (13c)

− 1

Ca

(

n

s Hn + (Hn)3

2

)
nn + Hnλnnn − ∇n

s λn + [
2ηn∗ D

(
un) − pnI

]
.nn = 0 on ∂Ωn, (13d)

divn
s .un = 0 on ∂Ωn, (13e)

un = ub on ΣD . (13f)

The second order induction on (un)n�0 is bootstrapped by using the initial condition: u−1 = u0 = u0, where u−1 stands
here for a convenient notation. The previous scheme uses two main steps. The first step (12) is an explicit computation
involving the characteristics. The second step (13) is a linear generalized Stokes sub-system that involves a constraint on
the boundary of the vesicle together with the usual incompressibility constraint. We point out that this scheme transforms
a strongly nonlinear shape optimization problem into a succession of explicit computations and linear subproblems. The
next paragraph presents how such a linear subproblem is treated.

3.2. The generalized Stokes subproblem

3.2.1. Formulation
The Canham–Helfrich force (9) appears in the right-hand side of the generalized Stokes subproblem and is evaluated by

using the updated values of nn = ∇φn/|∇φn| and Hn = divs nn at time tn . We introduce the weighted multi-linear forms:
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m(u,v) =
∫
Λ

u.v dx, ∀u,v ∈ (
L2(Λ)

)2
,

an(u,v) =
∫
Λ

2ηn∗ D(u) : D(v)dx, ∀u,v ∈ (
H1(Λ)

)2
,

b1(v,q) = −
∫
Λ

q div v dx, ∀q ∈ L2(Λ), ∀v ∈ H(div,Λ),

bn
2(v,μ) = −

∫
∂Ωn

μdivn
s v ds, ∀μ ∈ H

1
2
(
∂Ωn), ∀v ∈ H

(
divs, ∂Ωn),

where H(div,Λ) = {s ∈ (L2(Λ))2;div s ∈ L2(Λ)} (see e.g. [11,22]). The variational formulation of (13a)–(13f) writes:

(S): find un ∈ V(ub), pn ∈ L2(Λ) and λn ∈ H
1
2 (∂Ωn) such that

3Re

2
t
m

(
un,v

) + an(un,v
) + b1

(
v, pn) + bn

2

(
v, λn) = mn

s

(
fn,v

) + Re

2
t
m

(
4un−1o Xn−1

2 − un−2o Xn−2
2 ,v

)
, (14a)

b1
(
un,q

) = 0, (14b)

bn
2

(
un,μ

) = 0, (14c)

for all v ∈V(0), q ∈ L2(Λ) and μ ∈ H
1
2 (∂Ωn).

3.2.2. The Canham–Helfrich force
In this section, we are interested on the discretization of the Canham–Helfrich force (9). The force involves fourth order

derivatives of the level set function and a direct discretization approach would require a highly regular finite element
method, such as the Hermite one (see e.g. [10]) with H2 and C1 regularity. In order to use standard Lagrange finite element,
with only H1 and C0 regularity, the fourth-order derivatives are treated here with a different approach, based on a duality
argument.

Since Hn = div nn and nn = ∇φn/|∇φn|, then Hn involves the second order derivative of the level set function. Let
us define the skeleton of Ω as the set of points that are equidistant to at least two distinct points of ∂Ω (see e.g. [3,
p. 195]). In order to avoid division by |∇φn|, that could vanish on the skeleton, two intermediate variables rn = ∇(|∇φn|)
and Gn = Hn|∇φn| are used. First, using a classical Green formula in Λ, rn can be characterized as

rn ∈ H0(div,Λ) and
∫
Λ

rn.s dx =
∫
Λ

∣∣∇φn
∣∣ div s dx, ∀s ∈ H0(div,Λ),

where H0(div,Λ) = {s ∈ H(div,Λ); s.ν = 0}. Next, let us turn to Gn . A simple development leads to:

Gn
∣∣∇φn

∣∣ = −Hn
∣∣∇φn

∣∣2 = −div

( ∇φn

|∇φn|
)∣∣∇φn

∣∣2 = rn.∇φn − 
φn
∣∣∇φn

∣∣.
The duality argument is used for the 
φn term at the right-hand side and Gn is characterized by

Gn ∈ H1(Λ) and
∫
Λ

Gnζ
∣∣∇φn

∣∣dx =
∫
Λ

(
rn.∇φn)ζ dx +

∫
Λ

∇φn.∇ζ
∣∣∇φn

∣∣ dx, ∀ζ ∈ H1(Λ).

Finally, Hn is defined as the restriction to ∂Ωn of Gn/|∇φn|. Notice that this quantity is well defined since |∇φn| does not
vanish at the vicinity of ∂Ωn .

Let us consider the following Green formula on the closed surface Γ n = ∂Ωn:∫
Γ n


n
s ξζ ds +

∫
Γ n

∇n
s ξ.∇n

s ζ ds = 0, ∀ξ, ζ ∈ H1(Γ n).
Then Y n = −
s Hn can be computed in a weak sense:

Y n ∈ H1(∂Ωn) and
∫

∂Ωn

Y nζ ds =
∫

∂Ωn

∇n
s Hn.∇n

s ζ ds, ∀ζ ∈ H1(∂Ωn).
Let us summarize the procedure, and we introduce the following additional bilinear forms:
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mn
w(φ,ψ) =

∫
Λ

ϕψ
∣∣∇φn

∣∣ dx, ∀ϕ,ψ ∈ L2(Λ),

an
w(φ,ψ) =

∫
Λ

∇ϕ∇ψ
∣∣∇φn

∣∣ dx, ∀ϕ,ψ ∈ H1(Λ),

mn
s (ξ, ζ ) =

∫
∂Ωn

ξζ ds, ∀ξ, ζ ∈ L2(∂Ωn),
cn(ξ, ζ ) =

∫
∂Ωn

∇n
s ξ.∇n

s ζ ds, ∀ξ, ζ ∈ H1(∂Ωn).
Then, we compute successively:

rn ∈ H0(div,Λ) such that m
(
rn, s

) = −b1
(∣∣∇φn

∣∣, sn), ∀s ∈ H0(div,Λ),

Gn ∈ H1(Λ) such that mn
w

(
Gn,ψ

) = an
w

(
φn,ψ

) + m
(
rn.∇φn,ψ

)
, ∀ψ ∈ H1(Λ),

Hn = Gn

|∇φn| on ∂Ωn,

Y n ∈ H1(∂Ωn) such that mn
s

(
Y n, ζ

) = cn(Hn, ζ
)
, ∀ζ ∈ H1(∂Ωn),

nn = ∇φn

|∇φn| on ∂Ωn,

fn = 1

Ca

(
−Y n + (Hn)3

2

)
nn on ∂Ωn.

3.2.3. Extension and regularization
The previous variational formulation involves integrals over the moving surface ∂Ωn: in order to avoid the explicit

re-triangulation of the surface ∂Ωn at each time step, integrals over ∂Ωn are transformed into integrals over Λ. First, note
that an integral over ∂Ωn can be written as an integral over Λ with the help of the level set function φn and the Dirac
measure δ:∫

∂Ωn

ϕ ds =
∫
Λ

ϕ̃
∣∣∇φn

∣∣δ(φn)dx,

where ϕ̃ is an extension to Λ of any function ϕ defined in ∂Ωn . Therefore, the normal vector nn , defined over ∂Ωn , is
extended in the hole domain Λ following ∇φn/|∇φn|. Since there is no ambiguity, this extension of the normal is still
denoted by nn . By the same way, we extend to Λ the surface operators (6) and the Canham–Helfrich force (9); the previous
notations are still conserved. Nevertheless, the explicit management of Dirac measures is not an easy task in finite element
methods. Thus, the previous extension is combined together with a regularization procedure. Three sharp functions are here
considered: the Heaviside function H (φn), that acts as the indicator of Λ\Ωn , the Dirac measure δ(φn) that localizes the
surface ∂Ωn , and the sign function sgn(φn), that will be used in a forthcoming paragraph, for redistancing the level set
function.

In order to avoid the triangulation of ∂Ωn , a banded region of width 2ε is introduced, for some ε > 0. The Heaviside
H , the Dirac δ and the sign functions are replaced respectively by Hε , δε and sgnε , defined for all φ ∈ R by:

Hε(φ) =

⎧⎪⎨⎪⎩
0, when φ < −ε,

1
2 (1 + φ

ε + sin(
πφ
ε )

π ), when |φ| � ε,

1, otherwise,

δε(φ) = dHε

dφ
(φ) =

{
1

2ε (1 + cos(πφ
ε )), if |φ| � ε

0, otherwise,

sgnε(φ) = 2Hε(φ) − 1.

The sharp viscosity is also replaced by a smooth one: ηn∗,ε = β + (1 − β)Hε(φ
n).

The previous bilinear forms admits a regularized counterpart:

an
ε(u,v) =

∫
2ηn∗,ε D(u) : D(v)dx, ∀u,v ∈ (

H1(Λ)
)2

,

Λ
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mn
s,ε(u,v) =

∫
Λ

u.v
∣∣∇φn

∣∣δε(φn)dx, ∀u,v ∈ (
L2(Λ)

)2
,

bn
2,ε(v,μ) = −

∫
Λ

μdivn
s v

∣∣∇φn
∣∣δε(φn) dx, ∀μ ∈ L2(Λ), ∀v ∈ (

H1(Λ)
)2

,

cn
ε(ξ, ζ ) =

∫
Λ

∇n
s ξ.∇n

s ζ
∣∣∇φn

∣∣δε(φn)dx, ∀ξ, ζ ∈ H1(Λ).

The computation of the curvature Hn is unchanged while the Canham–Helfrich force becomes: find Y n
ε ∈ H1(Λ) such that

ms,ε
(
Y n

ε , ζ
) = cε

(
Hn, ζ

)
, ∀ζ ∈ H1(Λ).

Then, compute the extension to Λ of the force:

fn
ε = 1

Ca

(
−Y n

ε + (Hn)3

2

)
nn in Λ.

Problem (14) admits a regularized variant:

(S)ε: find un
ε ∈V(ub), pn

ε ∈ L2(Λ) and λn
ε ∈ L2(Λ) such that

3Re

2
t
m

(
un

ε,v
) + an

ε

(
un

ε,v
) + b1

(
v, pn

ε

) + bn
2,ε

(
v, λn

ε

) = mn
s,ε

(
fn
ε,v

) + Re

2
t
m

(
4un

εo Xn
2 − un−1

ε o Xn−1
2 ,v

)
, (15a)

b1
(
un

ε,q
) = 0, (15b)

bn
2,ε

(
un

ε,μ
) = 0, (15c)

for all v ∈ V(0), q ∈ L2(Λ) and μ ∈ L2(Λ). We notice that the surface tension λn
ε was extended to Λ. Concerning the

regularization parameter ε, we choose it numerically proportional to the mean mesh size h.

3.2.4. Finite element discretization
The Taylor–Hood finite element approximation (see e.g. [11]) for the Stokes problem is considered here for the velocity–

pressure approximation of the generalized Stokes problem. Let Th a finite element triangulation of Λ, where h > 0 stands
for the largest element diameter [10]. The following finite dimensional spaces are introduced:

Xh = {
q ∈ C0(Λ),q|K ∈ P1, ∀K ∈ Th

}
,

Sh = {
s ∈ X2

h , s.ν = 0 on ∂Λ
}
,

Xh = {
u ∈ (

C0(Λ)
)2

,u|K ∈ (P2)
d, ∀K ∈ Th

}
,

Vh(ub) = Xh ∩V(ub).

Let us assume that φn
h ∈ Xh is an approximation of φn at the n-th time step. The computation of the discrete Canham–

Helfrich force is:

rn
h ∈ Sh and m

(
rn

h, s
) = −b1

(∣∣∇φn
h

∣∣, sn)
, ∀s ∈ Sh,

Gn
h ∈ Xh and mn

w

(
Gn

h,ψ
) = an

w

(
φn

h ,ψ
) + m

(
rn

h.∇φn
h ,ψ

)
, ∀ψ ∈ Xh,

Hn
h = Gn

h

|∇φn
h | in Λ,

Y n
h ∈ Xh and ms,ε

(
Y n

h , ζ
) = cε

(
Hn

h, ζ
)
, ∀ζ ∈ Xh,

nn
h = ∇φn

h

|∇φn
h | in Λ,

fn
h = 1

Ca

(
−Y n

h + (Hn
h)3

2

)
nn

h in Λ.

The discrete generalized Stokes problem is:
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(S)h: find un
h ∈Vh(ub), pn

h ∈ Xh and λn
h ∈ Xh such that

3Re

2
t
m

(
un

h,v
) + an

ε

(
un

h,v
) + b1

(
v, pn

h

) + bn
2,ε

(
v, λn

h

) = mn
s,ε

(
fn
h,v

) + Re

2
t
m

(
4un−1

h o Xn−1
2 − un−2

h o Xn−2
2 ,v

)
, (16a)

b1
(
un

h,q
) = 0, (16b)

bn
2,ε

(
un

h,μ
) = 0, (16c)

for all v ∈Vh(0), q ∈ Xh and μ ∈ Xh . The previous finite-dimensional linear system involves the following matrix structure:( A BT
1 BT

2
B1 0 0
B2 0 0

)
.

Such systems have been extensively studied and various efficient strategies are known (see e.g. [21]). In the present paper,
this system is solved efficiently by the preconditioned conjugate gradient algorithm, as implemented in the Rheolef C++
library [51].

Summarizing, the previous discrete algorithm involves a semi-implicit numerical scheme with respect to time: its con-
vergence with respect to the time step choice will be investigated in the third part of this paper. However, the problem is
highly non-linear and the Canham–Helfrich force includes a fourth derivative with respect to the level set function. As a
matter of fact, restrictions on the time discretization step is needed for stability reasons. Consequently, this algorithm will
be improved in the forthcoming Section 3.4, and we present a fully-implicit scheme in time of type fix-point algorithm. This
algorithm allows to use bigger time steps.

3.3. The transport subproblem

3.3.1. Redistancing
Due to the inextensibility of the vesicle membrane and the fluid incompressibility, the level set function φ, initially

chosen to be a signed distance, remains also, for any t > 0, a signed distance among the advection step, as shown in
Appendix C. Nevertheless, after time and space discretization, we determined that the approximation φh is not a signed
distance after the discrete counterpart of the advection step. As a consequence, an auxiliary problem called the redistance
problem has to be solved in order to keep the function φh as a signed distance. The redistance step was detailed by the
authors in a separate paper [37] and we recall here briefly the main idea. For all t ∈ ]0, T [, an advection problem depending
on a pseudo-time τ is introduced and we shall find its stationary solution. Let φ̃(t, .) be the known level set function at
time t that is no more a distance function. The redistancing problem writes:⎧⎨⎩

∂ψ

∂τ
(τ , x; t) + v.∇ψ = sgn

(
φ̃(t, x)

) + λ(τ , x; t)g(ψ) a.e. (τ , x) ∈ ]0,+∞[ × Λ,

ψ(0, x; t) = φ̃(x, t) a.e. x ∈ Λ

(17)

where the advection vector field is v = sgn(φ̃)
∇ψ
|∇ψ | and sgn(φ̃) denotes the sign function and is equal to 0,−1,+1 respec-

tively on ∂Ω(t), inside Ω(t) and outside Ω(t). The redistancing problem (17) is affected by suitable Dirichlet boundary
conditions that are applied on the upstream boundary Σ− (5). However, as the advection vector v follows the outward
normal vector to the vesicle surface, then the upstream domain Σ− is an empty set, and solving the redistancing problem
allows the level set to change values on ∂Λ. Besides, we notice that λ(τ , x; t) is a Lagrange multiplier that enforces the
constraint of constant volume locally at x ∈ Λ. The zero level set is not modified by the presence of λ in the right hand side
of (17). This multiplier was first introduced by Sussman and Fatemi [53] in a finite difference context and then extended
in [37] in a finite element context.

Choosing g(ψ) = δ(ψ)|∇ψ |, the Lagrange multiplier has an explicit average value λV over an arbitrary finite volume
V ⊂ Λ:

λV (τ ; t) =
{ ∫

V δ(ψ)(v.∇ψ−sgn(φ̃)) ψx∫
V δ(ψ) g(ψ) dx

when V ∩ ∂Ω(t) �= ∅,

0 otherwise.

(18)

The stationary solution satisfies |∇ψ | = 1 almost everywhere in Λ, consequently ψ(∞, .; t) is a signed distance and is taken
as the new level set function φ(t, .) at time t . Let us notice that the solution ψ of the redistance problem (17) preserves the
position of ∂Ω(t): for any τ > 0, the zero level set of ψ(τ , .; t) is the same zero level set of φ(t, .). As a result the volume
meas(Ω(t)) is also preserved, this point has great importance for numerous applications. However, after discretization by
finite difference or finite element methods, this property is satisfied only approximately. We introduce the redistance
operator defined by φ(t, .) = redistance(φ̃(t, .)).

Let φ̃n be the approximation of φ̃(t), at time tn and ψm,vm be approximations of ψ(τ ),v(τ ) respectively at τm . The
time discretization is performed by using the method of characteristics and the total derivative Dψ/Dt is approximated by
a first-order backward Euler scheme as previously. The redistance problem (17) is solved explicitly:
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Algorithm 1 Level set coupling.

1: n = 0: Let ∂Ω(0) be the initial shape and φ0
h be its associated signed distance function. Let u0

h = u−1
h ∈V(ub) be the initial velocity field.

2: for n = 1, . . . ,nmax do
3: Let φn−1

h ∈ Q h and un−1
h , un−2

h ∈Vh(ub) being known.

4: [step 1]: compute φ̃n
h = πh(φn−1

h ◦ Xn−1
1 ) ∈ Q h ;

5: [step 2]: compute φn
h = redistance(φ̃n

h );
6: [step 3]: compute un

h , pn
h and λn

h .
7: end for

Fig. 2. Relative errors for vesicle area and perimeter, without improving conservation. Computations for h = 5.3 × 10−2, ε = 2.5h, 
t = 3 × 10−2 and
τ = 0.81.

ψm+1 =
{

ψm when |φ̃n| < ε,

ψm ◦ Xm
vε

+ 
τ sgnε(φ̃
n) otherwise.

(19)

Here, the characteristics have subscripts vε in order to avoid confusion. Let Wh be the space of piecewise constant functions
on Th and πh denotes the Lagrange interpolation in Q h . Let ψ0

h = φ̃n+1
h . At any step m � 0 of the redistance algorithm,

suppose ψm
h ∈ Q h being known, and let gm

h ∈ Q d
h be the approximation of ∇ψm

h ∈ W d
h defined by the following linear

system:∫
Λ

gm
h .wh dx =

∫
Λ

∇ψm
h .wh dx, ∀wh ∈ Q d

h .

A mass lumping procedure is used for this linear system: the integrals involved in the computation of the coefficients of the
matrix associated to the L2 scalar product are evaluated by using the trapeze quadrature formula. By this way, the matrix
of the linear system is replaced by a diagonal one, and the computation of gm

h becomes explicit. Then, let

vm
ε,h = πh

(
sgnε

(
φ̃n+1

h

) gm
h

|gm
h |

)
.

Finally, the discrete version of the redistance algorithm writes also explicitly:

ψm+1
h =

{
ψm

h when |φ̃n
h | < ε,

πh{ψm
h ◦ Xm

vε
+ 
τ sgnε(φ̃

n
h )(1 − |∇ψm

h |)} otherwise.
(20)

3.3.2. Improvement of the area and perimeter conservations
The overall coupling method is described in Algorithm 1.
In this section we present a numerical simulation to illustrate the features of the numerical method. We choose

Re = 10−3, Ca = 103, α = 1/10, τ = 0.81 and a viscosity ratio β = 50. Fig. 2 plots the evolution of the relative error in
vesicle area and perimeter. Observe that, after few iterations, the error becomes higher than 10% of the reference vesicle
area and perimeter: this error completely changes the vesicle shape, that evolves to a circular one. The algorithm must
be modified in order to improve the area and perimeter conservation. The problem of advection (4a) is substituted by the
equivalent system:
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∂φ

∂t
+ [

u + (p∗ + λ∗ f )n
]
.∇φ = 0 a.e (t, x) ∈ ]0,+∞[ × Λ, (21a)

d

dt

∫
Λ

(
1 − H (φ)

)
dx = 0 ∀t ∈ ]0,+∞[, (21b)

d

dt

∫
∂Ω

ds = 0 ∀t ∈ ]0,+∞[, (21c)

where p∗ and λ∗ are two global Lagrange multipliers associated to two additional constraints for area and perimeter preser-
vation. This system leads, after time discretization, to a modified and more robust scheme, with a modified advection field
u∗ = u + (p∗ + λ∗ f )n. The variation of area V (t) at time tn writes:

dV

dt

(
tn) =

[
d

dt

∫
Λ

(
1 − H (φ)

)
dx

]
t=tn

= V n − V n−1


t
+O(
t), (22)

where V n−1 = ∫
Ωn−1 dx is known and we want to impose that V n = V 0 the initial area, in order to avoid the previous area

error accumulation. Conversely, the variation of the perimeter A(t) at time tn expresses:

dA

dt

(
tn) =

[
d

dt

∫
∂Ω

ds

]
t=tn

= An − An−1


t
+O(
t), (23)

where An−1 = ∫
∂Ωn−1 ds is known and we want to impose that An = A0 the initial perimeter. Combining (21a) and (21b),

we obtain:

d

dt

∫
Λ

(
1 − H (φ)

)
dx = −

∫
Λ

∂φ

∂t
δ(φ)dx

= −
∫

∂Ω

1

|∇φ|
∂φ

∂t
ds =

∫
∂Ω

1

|∇φ|u∗.∇φ ds. (24)

Recall that, for any function ϕ and vector field v, the Reynolds formula on a surface ∂Ω writes:

d

dt

∫
∂Ω

f ds =
∫

∂Ω

d f

dt
+ ∇.( f u) − f (∇u.n).n ds. (25)

With ϕ = 1 and v = u∗ , and using the Green formula (10), we get successively:

d

dt

∫
∂Ω

ds =
∫

∂Ω

divs u∗ ds =
∫

∂Ω

Hu∗.n ds. (26)

At time tn , replacing un∗ by un + (pn∗ + λn∗ f )nn in (22)–(23) and using (24)–(26), we obtain the following linear system with
two unknowns (pn∗, λn∗) ∈ R

2:

pn∗
∫

∂Ω

ds + λn∗
∫

∂Ω

f ds = V 0 − ∫
Ωn dx


t
−

∫
∂Ω

u · n ds,

pn∗
∫

∂Ω

H ds + λn∗
∫

∂Ω

H f ds = A0 − ∫
∂Ωn ds


t
−

∫
∂Ω

Hu · n ds.

Choosing f a non-constant function ensure that this system is well-posed. In our simulations, we use f (x1, x2) = 2x2
1 + x2

2.
The influence of this function and the evolution of Lagrange multipliers will be discussed in Section 4.1.

3.3.3. Improvement by mesh adaptation
A way to adapt the mesh to the computation of a governing field is to equi-distribute its interpolation error, i.e. to

make it constant over all triangles and in the directions of maximal and minimal stretching and to adjust the maximal
and minimal directions of stretching to others of maximal and minimal error. Our approach bases on the bidirectional
anisotropic mesh generator bamg developed by F. Hecht [24] (see also [26,27,51]), together with the choice of a particular
metric, specific to our time-dependent level set problem.

For any triangle K of the mesh Th at time t , let T K be the affine transformation which maps the reference triangle K̂
into K (see Fig. 3):
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Fig. 3. Transformation from the reference element K̂ to any triangle K .

Fig. 4. (Left) Zoom on the adapted mesh; (right) vesicle tumbling under a linear shear flow for Re = 10−3, Ca = 104, α = 1/4, β = 20 and γ = 0.89. The
shapes are shown for t = kT p/14, k ∈ {1,2,3,4,5,8,11,12,13}, where T p = 10.3 is the tumbling period.

T K : K̂ −→ K
x̂ �−→ x = T K (x̂) = MK x̂ + tK

where MK is the Jacobian of T K . Notice that MK is unsymmetric and invertible, otherwise K would be flat. Thus, MK admits
a singular value decomposition (for SVD, see [23, p. 69]): MK = RT

K ΛK P K , where R K and P K are orthogonal and where ΛK

is diagonal with positive entries. The choice of the reference triangle K̂ is not unique. It is common practice to choose as K̂
the right triangle {(x1, x2), x1 > 0, x2 > 0, x1 + x2 < 1}. For mesh generation and adaption purposes, an equilateral triangle,
inscribed in the unit circle, is often preferred [20]. Since x̂ = M−1

K (x − tK ), the unit circle equation x̂T x̂ = 1 becomes:

1 = (x − tK )T M−T
K M−1

K (x − tK ) = (x − tK )T RT
K Λ−2

K R K (x − tK ).

This is the equation of an ellipse containing K (see Fig. 3).
Following [24], our choice of the metric is based on the Hessian tensor of a specific governing field χ , for which we aim

at decreasing the interpolation error. The interpolation error in the direction v ∈R
2 is given by:

eK ,v = h2
K ,v

∥∥∥∥∂2χ

∂v2

∥∥∥∥ on K ,

where hK ,v denotes the length of K in the direction v and ∂2χ
∂v2 = vT ∇∇χv, and ∇∇χ is the Hessian matrix of χ .

By adjusting the directional sizes hK ,v of K for each eigenvector of the Hessian matrix and each element K , the local
directional interpolation errors can be equidistributed on the whole domain. An adaptation loop is required in order to
guarantee the convergence of both the approximation of χ and its corresponding mesh. In order to adapt the mesh to the
vesicle boundary ∂Ωn at each time step tn , the governing field χ = δε(φ

n) + δε(φ
n−1) has been chosen for the adaptation

loop. For a uniform mesh, the regularization parameter used for the computation of integrals over ∂Ω is chosen as propor-
tional to the element size: ε = 2h. This choice is extended to a non-uniform mesh with a non-constant ε(x), x ∈ Λ, that is
proportional to an average value of the local mesh size: ε(x) = 2

√
2 meas(K )

1
2 , for all x ∈ K . Fig. 4(left) shows a zoom on

the adapted mesh at the end of the adaptation loop, where both the contours of ∂Ωn−1 and ∂Ωn are captured. Fig. 4(right)
represents the vesicle boundary evolution, as computed by the present auto-adaptive procedure.

3.4. Implicit time splitting algorithm

In order to deal efficiently with the highly nonlinear term expressing the Helfrich force, a fixed point algorithm variant
is introduced between the two main steps of the previous algorithm:
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Algorithm 2 Implicit time splitting algorithm.

1: Let n = 0 and (u0
h,ϕ0

h ) be the known initial condition
2: for n = 1, . . . ,nmax = T /
t do
3: Let (un+1,0

h ,ϕn+1,0
h ) = (un

h,ϕn
h ) being known

4: for k = 0, . . . ,kmax do
5: Let (un+1,k

h ,ϕn+1,k
h ) being known

6: compute the discrete Canham–Helfrich force f n,k+1
h from ϕn+1,k

h
7: solve the following linear generalized Stokes subproblem:

find un+1,k+1
h ∈Vh(ub), pn+1,k+1

h and λ
n+1,k+1
h ∈ Xh such that

3Re

2
t
m

(
un+1,k+1

h ,v
) + an+1,k+1

ε

(
un+1,k+1

h ,v
) + b1

(
v, pn+1,k+1

h

) + bn+1,k+1
2,ε

(
v, λ

n+1,k+1
h

)
= mn+1,k+1

s,ε

(
fn+1,k+1
h ,v

) + Re

2
t
m

(
4un+1,k

h o Xn+1,k
2 − un+1,k−1

h o Xn+1,k−1
2 ,v

)
, ∀v ∈ Vh(0)

b1
(
un+1,k+1

h ,q
) = 0, ∀q ∈ Xh

bn+1,k+1
2,ε

(
un+1,k+1

h ,μ
) = 0, ∀μ ∈ Xh

8: solve the modified advection system (21)
9: compute the signed distance function ϕn+1,k+1

h following (20)

10: if ‖un,k+1
h − un,k

h ‖1,Λ � εfp‖un,k
h ‖1,Λ then

11: set (un+1
h ,ϕn+1

h ) = (un+1,k+1
h ,ϕn+1,k+1

h )

12: stops the k loop
13: end if
14: end for
15: compute the new adapted mesh as described in Section 3.3.3
16: end for

(i) Firstly, the nonlinear dynamics is solved for fixed level set function and membrane geometry description;
(ii) Secondly, the advection and redistance subproblem are solved for a fixed fluid velocity.

This fixed point iteration is repeated until the relative error is less than a given tolerance εfp, chosen here as 10−6 for
the practical computations. This strategy has the advantage to split the problem into a succession of two simpler, linear
and more standard subproblems, while maintaining a robust implicit algorithm. The overall implicit method is detailed in
Algorithm 2.

4. Numerical results

In this section, we provide several numerical tests carried out with the finite element level set approach previously
described. The algorithms employed in the simulations have been implemented using a free software, the finite element
library Rheolef [51].

Biophysical applications, mainly the prediction of vesicles behavior in small blood vessels, is the scoop of this paper.
Simulations show, in accord with literature, that two flow regimes exist: a steady-state tank-treading regime where the
vesicle assumes a steady-state shape and its inclination angle remains constant with time, while the fluid membrane treads
as a tank and the internal fluid follows this rotation. The second regime is a periodic tumbling one, where the vesicle shape
rotates. The transition between the two regimes for a vesicle of fixed reduced area γ happens at a critical viscosity ratio
between the inside and outside fluid, beyond which the vesicle tumbles. In order to validate the proposed method, we
compared our results with available numerical data, i.e. for small Reynolds number. We have determined the transition line
separating the two regimes. These results are also founded to be in good agreement with the phase field method presented
in [5] (see also Fig. 2 in [38] for a comparison). Note that both the tank treading and tumbling motions are observed
experimentally (see e.g. Kantsler and Steinberg [30]).

In order to make a validation of our computations, we follow the experiments of Vitkova et al. [54] with vesicles under
shear flow. This is a typical situation in microfluidic devices and the viscous forces are dominant over the inertial ones: the
flow is almost laminar, and no turbulence can be observed, at least in the absence of vesicle. The considered physiological
parameters are

R0 ≈ 5 × 10−5 m, ρ ≈ 103 kg/m3,

L ≈ 10−3 m, η0 ∈ [5 × 10−4,0.2] kg s−1 m−1,

k ≈ 10−19 J.

The shear velocity at the wall V is between 1.2 × 10−2 and 0.12 m/s. Following the experimental values, we consider in a
first step these dimensionless parameter ranges: Re ∈ [1.5 × 10−9,1.5 × 10−4] and Ca ∈ [3 × 103,3 × 106]. Besides, vesicles
are deflated and correspond to γ ∈ [0.92,0.99]. However, Vitkova et al. [54] use confined vesicles in a pipe with a length
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Fig. 5. Relative errors in area and perimeter, after conservation improvement: (a) the vesicle area error; (b) the vesicle perimeter error.

Fig. 6. Evolution of the Lagrange multipliers for the tumbling of a vesicle with γ = 0.89 in a flow given by Re = 10−4 and Ca = 103.

equal to 1 mm. This leads to a confinement ratio equal to 1/20. The influence of this parameter is studied in the following
and depends on considered meshes. Lastly, the viscosity ratio β change around a critical value associated to a stability
transition, and it is taken usually smaller than 20 kg s−1 m−1.

4.1. Vesicles in the tumbling mode

In this section, we restrict ourselves to small Reynolds numbers, and we consider the following parameters: Re = 10−4,
Ca = 103, γ = 0.89 and 
t = 2.5 × 10−3. Besides, actual computations use confinements in the range [0.2,0.5] when using
regular meshes, and reach confinements up to 1/12 in the case of adapted meshes. We notice that, in this section, we
choose the viscosity ratio β such that the vesicle follows a tumbling regime.

Mass preservation First, let us check the improvement of the area and perimeter conservation, as introduced in the procedure
of the previous section. Computations are firstly performed with α = 1/9, and we plot in Fig. 5 the evolution of the relative
errors (V − V 0)/V 0 and (A − A0)/A0. We observe that, over a duration of 80 periods of tumbling, both the relative errors
in area and perimeter remain bounded by 10−3. The improvement of the conservation, based on Lagrange multipliers, is
clearly shown by a comparison with the previous computations in Fig. 2, where the errors diverge after two periods in the
tumbling regime. Consequently, we emphasize that the Lagrange multipliers technique is strongly needed in order to deal
with the mass lost that represents the major problem of Eulerian methods. Additionally, the influence of these parameters
on the vesicle dynamics has to be investigated deeply. To explore the influence of λ∗ and p∗ , we plot the evolution of
these parameters in time. From Fig. 6, the two Lagrange multipliers appear to remain bounded and very small, and we can
conclude that the influence they have on the dynamics can be neglected, especially when compared to a change in mass or
area. This change will have significantly a stronger effect on the dynamics.

Dependence on the choice of f We investigate the effect of the choice of the function f (x1, x2) (see (21a)) on the computation
of the solution. We use three expressions of f : f1(x1, x2) = 2x2

1 + x2
2, f2(x1, x2) = 2x2

1 + 5x2 and f3(x1, x2) = 3x1. The
dimensionless parameters are Re = 0.1, Ca = 104 and β = 75 and we study the dynamics of vesicle with γ = 1. Under
simple shear flow; it keeps a circular shape and we compute the errors between the numerical and the exact solution for
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Fig. 7. (a) Convergence properties for three different expressions of function f . (b) Critical value of the time step in log-log scale for different mesh steps.

Fig. 8. Adapted meshes used for the study of the effect of the confinement α: from left to right: α = 1/2, 1/5 and 1/9.

the time interval ]0,2s[ in Fig. 7(a). The error upon the geometry is expressed by the L2 norm of Hε(φ)−Hε(φh) where φ

and φh are respectively the exact and the computed level set functions, and H denotes the regularized Heaviside function
(see Section 3.2.3).

Results show that the error decreases versus the mesh size, and the choice of f doesn’t affect the convergence of
the method. Moreover, the plot suggests an O(h) convergence of the predicted geometry versus the mesh size after two
tumbling periods.

Dependence upon the time step From the computational cost viewpoint, the choice of the time step is very important partic-
ularly because the method has to be used in three-dimensional case in forthcoming works. Therefore, we consider in this
section only a regular mesh, and we investigate how does the chosen time step compares to the space discretization.

Firstly, we consider the case when the algorithm is semi-implicit; this corresponds to a fixed point loop in Algorithm 2
that is stopped after the first computation, i.e. kmax = 1. Due to the moving interface and the computation of the Helfrich
forces, there exists a critical value of the time step 
t∗ such that, for time steps beyond this threshold value 
t > 
t∗ ,
the algorithm is not stable. We do computations using the following parameters: Re = 1, Ca = 104, β = 100 and γ = 0.95.
Then, we plot in Fig. 7(b) the critical value 
t∗ for different values of the mesh size h and we observe that the slope of the
regression line is about 2.5: this suggests that 
t∗ behaves like h2.5. In fact, this time step limitation is related to the case
of an explicit scheme, and the use of the implicit algorithm appears therefore to be of major importance.

Secondly, we focus on the fix point Algorithm 2. Computations show that there is no more limitation on the choice of
the time step but in practice, we consider usually 
t ∈ [0.01,0.1]. However, the linear system has to be solved inside each
fix point loop, and, for a time step 
t = 0.01, we need usually between five and seven sub-iterations until we reach the
tolerance ε f p , which guarantees stability for the coupling algorithm.

Dependence on the confinement In this subsection, we investigate the effect of the confinement α on the vesicle tumbling
regime: a recirculation flow around the vesicle membrane can change deeply the dynamics behavior of the membrane.
Adapted meshes, that capture the vesicle boundary are shown in Fig. 8 for different confinements. Fig. 9 plots the evolution
of the tumbling dimensionless period, denoted by T p , versus 1/α. As expected, these results show that results depend
strongly on the confinement α when α is close to one, i.e. when the vesicle is confined, while the tumbling period becomes
independent for small α values. In the simulations presented in the rest of the paper, we choose α = 1/4: this choice
guaranties that the dynamics depends weekly upon the confinement.

Let us denote by θ(t) the inclination angle measured counterclockwise from the positive x1 semi-axis. The numerical
computation of the inclination angle θ(t) for an arbitrary shape Ω(t) is reported in Appendix D. The vesicle reaches a
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Fig. 9. Period T p in the tumbling regime with respect to 1/α. The simulation corresponds to: Re = 10−4, Ca = 103, β = 20 and γ = 0.82.

Fig. 10. Lissajous curves in the tumbling regime: (a) the angular velocity dθ
dt vs θ and (b) the Canham–Helfrich energy vs θ .

periodic regime after about ten periods of tumbling, and the inclination angle θ(t) follows a periodic regime. We set a sim-
ulation using the following dimensionless parameters: Re = 10−4, Ca = 103, α = 1/4, β = 20 and γ = 0.82, and we observe
some Lissajous representations that are suitable for periodic phenomenas. Once the periodic regime is well established, we
plot in Fig. 10(a) the angular velocity dθ

dt with respect to θ : we observe that the angular velocity is minimal when θ = 0, i.e.
when the vesicle is aligned with the horizontal axis, while its maximal when the vesicle is aligned vertically (θ = ±π/2).
Fig. 10(b) plots the evolution of the Canham–Helfrich energy with respect to θ : this energy reaches a global maximum
when the vesicle is roughly aligned horizontally and, conversely, reaches a minimum when its roughly aligned vertically.
Here, there is a small phase shift: the extrema of the energy are slightly in advance with the corresponding extrema of the
angular velocity.

In order to study analytically the dynamics of vesicles, a rough analytical model was proposed in 1982 by Keller and
Skalak [31]. This model incorporates a quasi-inextensible membrane, but vesicles were treated as undeformable liquid ellip-
soids. Nevertheless, this model was able to reproduce the tumbling regime for reduced areas γ near 1 (i.e. quasi-spherical
shapes), for which the distance to inextensibility is weak. Keller and Skalak [31] showed that the ellipsoid motion is de-
scribed by:

dθ

dt
= −1

2
+ c(γ ,β) cos(2θ),

where c(γ ,β) is a coefficient depending on the aspect ratio γ and the viscosity ratio β . Fig. 11 plots dθ
dt versus cos(2θ).

Observe the good correspondence with the affine behavior, as predicted by the Keller and Skalak theory. A linear regression
on the numerical simulation data leads to the slope coefficient c = 0.33.

Dependence on the reduced area Let us turn to the effect of the reduced area γ on the period of tumbling T p . We consider a
vesicle with a viscosity ratio β = 50 in a shear flow with a Reynolds number Re = 10−4 and a Capillarity number Ca = 103.
Observe in Fig. 12 the quasi-linear dependence of T p upon γ . This behavior can be interpreted as follow: when the vesicle
is more circular (e.g. for high reduced area), it is less deformed during the tumbling dynamics and its rotational movement
is easier. As a consequence, the tumbling period becomes smaller.
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Fig. 11. Evolution of the angular velocity dθ
dt in the tumbling regime with respect to cos(2θ). The dimensionless parameters of the computation are

Re = 10−4, Ca = 104, α = 1/9, β = 50 and γ = 0.84. The linear regression suggests that dθ
dt = 0.33 cos(2θ) − 0.5, as indicated by the continuous line.

Fig. 12. Tumbling regime: period T p vs the reduced area γ , for Re = 10−4, Ca = 103, α = 1/4 and β = 50.

Fig. 13. Tank-treading regime vs time for Re = 10−4, Ca = 104, α = 1/2, β = 1 and γ = 0.84: streamlines lines and velocity field on the vesicle mem-
brane ∂Ω . Figures are, from left to right, at t = k
t , k ∈ {60,120,1000} and 
t = 2 × 10−2.

4.2. The tank-treading regime

When the viscosity ratio β becomes smaller than a critical value, a transition to the tank-treading regime occurs. The
fluid inside the vesicle is highly deformed and rotated, and the vesicle adopts a stationary boundary ∂Ω . Fig. 13 plots
the streamlines and the velocity fields on the vesicle membrane. Remark that, when the stationary regime is reached, the
velocity field become tangential to the membrane, and then we observe that the tank treading movement becomes more
appropriate to preserve the minimal energy state. Fig. 14 represents the vesicle orientation θ(t): observe that it reaches
rapidly a stationary value, denoted by θ∗ . Notice that the velocity is not vanishing along ∂Ω: the membrane continues to
tread like a tank and the internal fluid follows this rotation.
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Fig. 14. Tank-treading regime: time evolution of the tumbling inclination angle for various confinements α and γ = 0.89.

Fig. 15. Tank-treading regime: convergence of the stationary angle θ∗ versus the mesh refinement h.

Numerical validation In this paragraph, we study the convergence properties of the numerical solution versus both the mesh
refinement h and the confinement α. For this purpose, we perform a shear flow simulation of vesicles with several reduced
areas γ in the tank-treading regime. The convergence properties are evaluated by observing the dependence of the steady
state inclination angle θ∗ upon h and α.

Let us first consider the dependence upon mesh refinement, where a family of regular grids are considered. Fig. 15 groups
in a table the stationary angles θ∗

h obtained for decreasing values of h and for various reduced areas γ . By extrapolation for
h = 0, we are able to compute an improved value of the stationary angle, denoted simply as θ∗ . Our extrapolation is based
on a linear least square procedure, as implemented in [56]. Then, the error is estimated as θ∗

h − θ∗ and plotted in Fig. 15.
Observe that the slope in logarithmic scale is of about one, suggesting an O(h) convergence.

Fig. 16 groups in a table the stationary angles θ∗
α obtained for decreasing values of the confinement α and for various

reduced areas γ . By extrapolating to α = 0, we compute an improved value of the stationary angle, denoted simply as θ∗
and estimate the error θ∗

α − θ∗ . The plot in Fig. 16 suggests an exponential convergence of the stationary angle to a value
associated to an unconfined vesicle.

Experimental validation: comparison with data in vitro and simulations For accuracy reasons, we compare our results with those
performed by Zhao and Shaqfeh (2011) [57] and by Kraus et al. (1996) [33]. Then, in terms of physiological relevance, we
compare with experiment measurements observed by Kantsler and Steinberg (2006) [30]. Firstly, we study the dynamics
of vesicles in the tank treading regime for vesicles with different reduced areas and we perform a quantitative comparison
with the results presented in [33] and [57]. Then, by modifying the viscosity ratio, we perform simulations for β ∈ 1,2.7,5.4
and we proceed to a comparative study in light of experimental observations in [30] and numerical results in [57]. In both
simulations and data, we observe from Fig. 17 and Fig. 18, by plotting the dependence of θ∗ upon γ , a close fit of the
simulated vesicle motion with respect to the experiments and numerical data. Moreover, we notice that results for the
inclination angle for very small values of Re are consistent with the computational results of Salac and Miksis presented in
Fig. 17 in [49]. In summary, we obtain a satisfactory agreement between numerical results and measured data.
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Fig. 16. Tank-treading regime: convergence of the stationary angle θ∗ versus the confinement 1/α.

Fig. 17. Inclination angle of the steady-state tank-treading regime with a viscosity ratio β = 1. Comparative study for Ca = 10 with numerical results of
Zhao and Shaqfeh (2011) [57] for Ca = 9 and Kraus et al. (1996) [33] for Ca = 10.

Fig. 18. Inclination angle of the steady-state tank-treading regime with different viscosity ratio β = 1, β = 2.7 and β = 5.4: comparative study of our results
(dashed blue line with squares) with numerical results of Zhao and Shaqfeh (2011) (dotted green line with triangular symbols), and experimental validation with
the measurements of Kantsler and Steinberg (2006) [30] (circular red point symbols).

4.3. Effect of inertia

An exhaustive study of the rheology of a vesicle in the presence of inertia has been carried out in this section. Although
the basic behaviors had already been observed, the results shown in this part were nontrivial and not completely understood
yet. In fact, we notice that the Reynolds number (at the scale of the RBC) in the blood circulatory system is not always small
enough for the Stokes limit to be valid. From a rough estimation in [38] it follows that the Reynolds number, particularly
in the arterioles, evaluated at the scale of the RBC may be of order unity. By the same way, the radius of experimental
vesicles used in laboratory experiments is of about 5 × 10−5 m while it is possible to supervise vesicles with velocity of
0.1 m s−1 using rapid cameras; the estimation leads to Re ≈ 5. Consequently, it follows from these estimations that the
inertial effect is of the same order as the viscous one; it can no more be neglected and the prediction of vesicle behaviors
should be studied for these magnitude of the Reynolds numbers. In the following, we find that a Reynolds number of order
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Fig. 19. Inertia effect: influence of Re on the vesicle inclination θ(t) for Ca = 104, α = 1/2, β = 10 and γ = 0.82. (a) Tumbling regime when Re � 3/5;
(b) tank-treading regime when Re � 4.

one can destroy completely the vesicle tumbling motion obtained in the Stokes regime. We plot in Fig. 20 the movement
of the vesicle for a finite Reynolds value Re = 0.4. At each time, we observe that the deformed shape of the vesicle differs
a lot from the shape represented in Fig. 4(right) and corresponding to small Reynolds numbers. We remark especially that
the deformations are more important when the inclination angle is close to π/2. Above a threshold value of the Reynolds
number, computations reveal that the tumbling regime disappears in favor of tank treading regime, and the vesicle keeps
then a constant inclination angle. We plot in Figs. 19(a) and 19(b) the angle θ(t) for γ = 0.82, and we observe that the
period T p increases with Re until it reach a critical Reynolds number between 3.5 and 4. For Re > 4, the angle θ(t) becomes
constant: the vesicle switch from a tumbling regime to a tank-treading one.

However, more developments, detailed analysis of this phenomenon and discussions on the effect of the inertia on vesi-
cles dynamics, such as phase diagram in the relevant parameter space, are provided in [35,38]. Other relevant investigations
of the dynamics of vesicles in flows, where both inertial and viscous effects are important, are founded in [50].

5. Conclusion

The new level method presented in this paper for the simulation of the vesicle dynamics exactly satisfies both the
inextensibility membrane condition and the volume conservation: these properties are also true at the discrete level. We
show that the proposed method, based on Lagrange multipliers, solves a lack of precision problem when dealing with
the inextensibility constraints and the level set method. Moreover, an automatic adaptive method, used at each time step,
enhance the prediction of the vesicle motion. With this procedure, we are able to accurately reproduce the change of regime,
from tank-treading to tumbling, as observed when the viscosity ratio varies.

We exhibit the appearance of a new change of regime when the Reynolds number is above a critical value. Moreover,
the critical Reynolds number of this order of magnitude for both red blood cells in arteries and vesicles used in laboratory
experiments. In the future, new experiments on vesicle would be necessary to infirm or confirm your numerical predictions.

Appendix A. Remark on the spontaneous curvature

Let denote by V 0 the area and by A0 the perimeter of the vesicle Ω . Using as a characteristic length the radius R0 of
the circle having the same perimeter as ∂Ω , the relation between the Lagrangian L and its dimensionless counterpart L̃
writes:

L̃ (Ω̃; λ̃, p̃) = 2R0

kc
L (Ω;λ, p) =

∫
∂Ω̃

H̃2 d s̃ + λ̃

( ∫
∂Ω̃

d s̃ − Ã0

)
+ p̃

(∫
Ω̃

d̃x − Ṽ 0

)
,

where λ̃ = 2
kc

λR2
0 and p̃ = 2

kc
pR3

0 denote the dimensionless Lagrange multipliers. Recall that the reduced area γ = V 0
π ×

( 2π
A0

)2 = V 0
π R2

0
. Then, for the dimensionless problem, the volume and area express Ṽ 0 = V 0

R2
0

= πγ and Ã0 = A0
R0

= 2π . As a

consequence, the reduced area γ is the unique dimensionless number of this problem, that characterizes the stationary
shape of the vesicle: others parameters, such as kc , has no effects.

Let us turn to the effect of the spontaneous curvature H0 � 0: The Lagrangian writes:

L (Ω;λ, p) = kc

2

∫
(H − H0)

2 ds + λ

( ∫
ds − A0

)
+ p

(∫
dx − V 0

)
. (A.1)
∂Ω ∂Ω Ω
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Fig. 20. Inertia effects: streamlines lines and velocity field on the vesicle membrane for Re = 0.4, Ca = 104, α = 1/2, β = 10 and γ = 0.62. Figure are shown,
from left to right and from top to bottom, at t = kT p/24, k ∈ {2,4,6,8,13,18,20,22,24}, where T p = 29.1 is the tumbling period.

From (H − H0)
2 = H2 −2H H0 + H2

0, notice first that the last H2
0 term is constant and thus, has no effects in the minimization

problem. The only term that depend upon H0 is the second one, involving H0
∫
∂Ω

H ds. Using the general shape derivative
analysis framework [36] with f (H) = H , we get, for any vector field u:

∂

∂Ω

( ∫
∂Ω

H ds

)
(Ω).(u) =

∫
∂Ω

2K u.n ds, (A.2)

where K is the Gauss curvature of ∂Ω . The gauss curvature K is equal to zero for two dimensional problems. Then, the
equilibrium shape of bidimensional vesicle depends only on the reduced area γ . As a matter of fact, the spontaneous
curvature H0 is only pertinent for three-dimensional problems.

Appendix B. Remarks on the Lagrange multipliers

Let us introduce the following space of admissible velocities:

K(ub) = {
v ∈V(ub);div v = 0 in Λ and divs v = 0 on ∂Ω

}
.

For any shape Ω and any admissible velocity field u defined in Λ, the energy of the system is defined by:
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J (u) =
∫
Λ

η∗∣∣D(u)
∣∣2

dx + 1

2Ca

∫
∂Ω

H2 ds, (B.1)

where |.| denotes the Euclidean norms of vectors or tensors. The previous expression of the energy includes two terms: the
viscous energy involving u and the Canham–Helfrich bending energy, involving the shape Ω of the vesicle. Notice that, in
the bending energy term in (B.1), the membrane ∂Ω depends upon the velocity field u via (3) and the level-set function φ,
satisfying the transport problem (4) that involves u. Also, the curvature H on ∂Ω depends implicitly upon u. Remark that
J is not convex in general: the optimality system J ′(u) = 0 could include both minimums and maximums of the energy J .
Thus, this optimality system is not equivalent to the minimization of the energy. Nevertheless, a minimum of J is also a
solution of the optimality system.

An initial velocity field u0 is given. The problem is a strongly nonlinear shape optimization problem and writes:

u = arg inf
v∈K(t,ub)

J (v).

The space of admissible velocities K(t,ub) contains the incompressibility and inextensibility constraints: it is not suitable
for practical finite element discretization, since there are no known finite element basis of such spaces. Conversely, the
unconstrained space of V(ub) is of practical interest: the two constraints can be imposed via two Lagrange multipliers: the
pressure p and the surface tension λ. Let us introduce the following Lagrangian:

L (u; p, λ) = J (u) +
∫
Λ

p div u dx +
∫

∂Ω

λdivs v ds.

The previous minimization problem can be rewritten as a saddle point problem:

(u, p, λ) = arg inf
v∈V(ub)

sup
q∈L2(Λ)

μ∈H
1
2 (∂Ω)

L (v;q,μ).

The usual [1] space of the trace of elements of H1(Ω) on ∂Ω is denoted by H
1
2 (∂Ω). The Lagrange multipliers p and

λ are associated to the constraints of local mass and area conservations. However, the minimization and saddle-points
principles are limited to the cases with zero Reynolds numbers, but they allows us to better understand the Lagrange
multipliers significances and to perform suitable mass corrections in Section 3. Moreover, Section 3 shows that, after time
discretization, a similar saddle-point problem has to be solved at each time step.

Appendix C. Remark on the redistanciation procedure

Let us consider the transport equation: Dtφ = ∂tφ + u.∇φ = 0. Using the summation of repeated indices convention, we
get: ∂iφ∂i∂tφ+∂iφ∂i(u j∂ jφ) = 0 that writes also equivalently: (1/2)∂t(|∇φ|2)+|∇φ|2(n⊗n) : u+∂iφ.∂i(u j∂ jφ). Remark that:
∂iφ.∂i(u j∂ jφ) = (1/2) u j .∂ j((∂iφ)2) = (1/2) u.∇(|∇φ|2) = |∇φ|u.∇(|∇φ|). Then, we obtain: Dt(|∇φ|) = |∇φ| (divs u − div u).
The density of the fluid is supposed to be constant, and the mass conservation leads to div u = 0. Moreover, in the context of
vesicles, divs u = 0 since the membrane is supposed to be inextensible. Thus Dt(|∇φ|) = 0. When |∇φ| = 1 at t = 0, i.e. when
φ is initially a distance function, this property is then preserved for all t > 0. When using the finite element approximation,
we observe that this property is only approximately preserved, and thus, the redistancing procedure described in this paper
is applied.

Appendix D. Computation of the vesicle inclination

This appendix presents the computation of the angle θ of the shape Ω . Let (x1, x2) be the coordinate system for R
2,

containing the shape Ω and dx = dx1 dx2. The center of the vesicle is denoted by (x̄1, x̄2), where x̄1 = (
∫
Ω

x1 dx)/meas(Ω)

and x̄2 = (
∫
Ω

x2 dx)/meas(Ω). Let I be the inertia matrix of the vesicle relative to the vertical axis in (x̄1, x̄2):

I O =
( ∫

Ω
(x1 − x̄1)

2 dx
∫
Ω

(x1 − x̄1)(x2 − x̄1)dx∫
Ω

(x1 − x̄1)(x2 − x̄1)dx
∫
Ω

(x2 − x̄1)
2 dx

)
.

This symmetric matrix has two real eigenvalues and orthogonal eigenvectors. The inclination angle θ is defined as the angle
between the eigenvector associated to the largest eigenvalue, and the x1 axis.
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