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SUMMARY

This contribution is concerned with the numerical modeling of an isolated red blood cell (RBC), and more
generally of phospholipid membranes. We propose an adaptive Eulerian finite element approximation, based
on the level set method, of a shape optimization problem arising in the study of RBCs. We simulate the
equilibrium shapes that minimize the elastic bending energy under prescribed constraints of fixed volume
and surface area. An anisotropic mesh adaptation technique is used in the vicinity of the cell membrane to
enhance the robustness of the method. Efficient time and spatial discretizations are considered and imple-
mented. We address in detail the main features of the proposed method, and finally we report several
numerical experiments in the two-dimensional and the three-dimensional axisymmetric cases. The effective-
ness of the numerical method is further demonstrated through numerical comparisons with semi-analytical
solutions provided by a reduced order model. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The blood represents an essential element for life. It is composed of several cell types that possess
specific functions. In particular, red blood cell (RBCs) are the most abundant cells in the blood and
allow to carry oxygen through the body. Advancing the modeling strategies and the computational
methodologies of the blood function can certainly be a key component in the understanding of blood
disorders and the development of novel therapies and prognostic methods. Since several decades,
there is an increasing interest in many aspects of blood modeling driven by the increasing demand
from the medical community for scientifically rigorous studies of blood. Scientifical investigations
extend to a wide range of spatio-temporal scales covering the microscopic and the macroscopic
scales. In the present work, we are interested in the microscopic modeling of RBCs. Vesicles, also
called liposomes, represent a simple and attractive model introduced to mimic the viscoelastic and
the mechanical behaviors of RBCs. They are closed membranes having the structure of amphiphilic
molecules that are self-assembled in water to build a structure of bilayers. Regarding the modeling
of RBCs and vesicles, several investigations and substantial achievements have been made involv-
ing researchers from diverse communities in the fields of biology [1], applied mathematics [2-6],
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scientific computing [7-9], and the biomedical field [10]. These cells exhibit a wide and rich set
of shapes in various physical environments. Effective mathematical models, seconded by the use
of accurate numerical methodologies, are needed to study, in particular, the equilibrium shapes
of RBCs.

A wide variety of models were developed to describe the deformation of RBCs, for example,
[4, 5, 11-18]. Because of the incompressibility, the main mode of the deformation of vesicles is
bending, and the bending energy describes the cell shapes. In the early 1970s, Canham [19] and
Helfrich [20, 21] formalized the physical properties of the cell membrane in a mathematical model,
where the cost in the bending energy is given by the curvature of the membrane. Let us define
the mean curvature H and the Gauss curvature K, respectively, as the sum and the product of the
principle curvatures on the cell membrane. Let € R3 be a bounded domain with smooth boundary
T" that represents the cell membrane. The bending energy, also referred to as the Willmore energy
[22, 23], reads

k k
J=—f(H—H0)2ds+—g/de,
2 Jr 2 Jr

where k and k, are two constants that represent the bending rigidity and the Gaussian curvature
modulus, respectively. In the present work, we assume unit values of k and kg. The spontaneous
curvature Hj allows to describe the asymmetry effect of the membrane and its surrounding envi-
ronment, which is caused by inhomogeneities within the structure of the membrane bilayers, see
for example, [24]. The spontaneous curvature has no effect on the shape of the cell in the two-
dimensional case, whereas the shape shall depend on Hj in the tridimensional case [25]. We assume
that the shape topological gender of the RBC is preserved, because topological changes are ener-
getically disadvantaged, for example, [25-27]. Accordingly, the integral depending on K in J
is disregarded.

The RBC’s membrane has special properties that drive the cell dynamics and control the equilib-
rium shapes. In fact, the membrane remains impermeable, and the cost of the bending deformations
is significantly smaller than the cost of stretching or compressing the membrane. The incompress-
ibility of the inner domain of the cell and the inextensibility of the membrane are required. Hence,
the equilibrium shapes of RBCs are the minimizers of the energy of Canham and Helfrich under the
constraints of fixed volume and surface area. In addition, the shape depends on specific parameters
that are obtained by the non-dimensional formulation of the problem. The RBC can be more or less
inflated, and the deflation could be due to the thermal expansion of phospholipids or the osmotic
effects. Let us introduce the area Ay and the volume Vj of the cell. The reduced volume y is a
dimensionless parameter that measures the deflation of the cell. It represents the ratio between the
volume of the cell and the volume of a sphere having the same surface area Ay.

3y (4m\*?
y=—x|— .
4 A()
Accordingly, y can range from 0, that is, completely deflated shape, to 1, that is, spherical shape. The
human RBC have usually a biconcave disk-like shape with a reduced volume y ~ 0.64. However,
other shapes are observed by varying y, such as the stomatocytes, the oblates, and the prolates
[28, 29]. In the two-dimensional case, the dimensionless shape parameter is called the reduced area,
and it is given by the ratio between the cell area and the area of a circle having the same perimeter

as the cell. It reads
_ V() « 2 2
V= b A() '

The Euler-Lagrange equation describes the equilibrium shapes of RBCs, where two Lagrange mul-
tipliers p and o help to impose the volume and area constraints, respectively. This equation was
obtained using various mathematical approaches, such as the differential geometry [30, 31] and
the shape differentiation technique [32-34]. In a previous work [34], we derived a generalized
mechanical equation describing the RBC’s equilibrium:
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1
p+oH + k. (E(H — Ho)[4K — H(H + Hy)] — ASH) =0,

where A represents the Laplace—Beltrami operator.

Several experimental and theoretical studies have focused on the equilibrium shapes of BRCs
and vesicles. While there is a substantial interest from the numerical point of view, most of these
contributions have used lumped parameter models. Some numerical strategies for the modeling
of RBCs shapes in the equilibrium can be found in [1, 4, 26, 35]. According to their frame-
work, RBC models can be roughly divided into two families: Lagrangian models and Eulerian
models. On the one hand, in a Lagrangian-based framework, the model is written in the refer-
ence configuration. A mesh fitting the RBC’s shape is employed and deforms according to the
cell motion. Although more precise, the Lagrangian methods are often a demanding task that
could generate computational instabilities related to the deterioration of the mesh quality. Sophis-
ticated remeshing strategies are then required. For instance, the boundary element method [36, 37]
and the immersed boundary method [38] are widely used. On the other hand, Eulerian meth-
ods help to easily address the issues related to the mesh distortion, because the membrane is
implicitly described. However, a good solver for the advection problem is usually required. In
addition, several issues related to an excessive amount of mass loss or gain must be handled
[39]. Among the existing methodologies, we can cite the volume-of-fluid method [40, 41], the
phase field method [35, 42, 43], and the level set method [44-46]. In the present work, we use
the level set method, where the cell membrane is implicitly described as a particular level set.
Regarding the membrane incompressibility, it plays an essential role to get the observed shapes of
RBCs, because it allows to preserve a fixed surface area. This constraint could be satisfied using
a penalty approach [26, 46], or or by introducing a Lagrange multiplier [35]. The latter strategy is
considered herein.

In what follows, we describe the model used to simulate the equilibrium shapes of RBCs. An
Eulerian finite element method based on the level set approach is used. To overcome a usual draw-
back of Eulerian methods, we first employ a modified level set approach based on the imposition of
additional constraints via some Lagrange multipliers that enable to enforce the mass conservation.
Furthermore, a mesh adaptation technique is used to better capture the RBC membrane. A reduced
order model helps to validate afterwards the computational results.

Outline. We have arranged the remainder of this paper as follows. In Section 2, we introduce
the required notations, and we provide a consistent mathematical setting for the formulation of
the physical model of minimal energy. A saddle point formulation allows us to characterize the
solution in the weak formulation. We present a detailed description of the mixed finite element
method, and we describe an anisotropic mesh adaptation procedure that helps to enhance the mass
preservation. Section 3 outlines the detailed numerical algorithm. A set of numerical examples illus-
trating the main features of the model and the accuracy of the adaptive finite element computations
are listed in Section 4. Some concluding remarks are provided in Section 5. Finally, a reduced
order model describing the equilibrium of RBCs is derived in Appendix A and helps validate our
computational results.

2. MATHEMATICAL MODEL FOR RBC’s EQUILIBRIUM SHAPE

2.1. Notations

Let A C R4, d € {2,3} be the bounded domain containing the RBC and the surrounding domain,
where L > 0 represents the domain width. We assume that A is large enough so that the cell
membrane never touch the boundary dA. Figure 1 provides a sketch of the cell membrane and the
computational domain. Let x represent the spatial coordinate in the domain A at time ¢. Let us
introduce the outward unit normal vectors n and v, respectively, on I and dA (Figure 1). Let ¥_ =
{x € A : u-v(x) < 0} represent the upstream boundary. Let us consider a scalar function x and a
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Figure 1. A sketch for the red blood cell embedded in the surrounding computational domain.

vector field u. We define the tangential gradient, the tangential divergence, and the Laplace—Beltrami
operator (called also surface Laplacian), which are given respectively by the following:

Vsx :=(I—-n®n)Vx =Vx—(n.Vx)n
divg(u) := trace(Vsx) = I—n®n) : Vu 2.1
Agx = divg(Vsx)

where the symbol ® denotes the tensorial product, and the semicolon (:) represents the two times
contracted product between tensors.

2.2. Level set formulation

Let T > 0 and for any ¢t € (0,7T) let us assume that the domain within the cell has a smooth
boundary I' = 9$2. We introduce a level set function ¢ defined in the domain A, in order to label
the inside and the outside of the cell. The membrane I" is given by the following:

F'={(tx)e (0,T)x A :¢(t,x)=0}. 2.2)
It represents a particular level set of ¢ and, by convention, the set {(z,x) € (0,7T) x A : p(t,x) < 0}
represents the inner domain. The advection of the level set function enables to to follow the
deformation of I", and we have

drp+u-Vo=0in (0,7) x A. (2.3)

The advection field u# will be obtained afterwards from a shape optimization problem
(Section 2.4). Suitable initial and boundary conditions are required:

©(0,)) = @o(-) in A and o =¢p on(0,T)xX_.

The function ¢ acts as initial datum for (2.3), and it represents the signed distance to
FO = 8902

inf |y — x|, if x ¢ Qo,
Po(x) = velo
— inf |y — x|, otherwise.
yelo
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2.3. Redistancing and regularization

By solving the advection problem (2.3), the level set function ¢ loses its property of being a signed
distance function, and |Vg| # 1 € A. We need to avoid this situation because too large or too
small gradients of the level set function, notably around I" and dA, indicate respectively either a
steep or a flat function whose zero level set is less accurately tracked. An auxiliary problem called
commonly the redistancing problem may be solved to recover the signed distance property.
An accurate redistancing procedure should keep two properties: the inner volume 2 of the cell
should be preserved and the zero-level set I' should keep its initial position. To address these issues,
we introduce a modified redistancing problem where a Lagrange multiplier located in the vicinity
of T is introduced to enhance the local mass conservation [47]. Let ¢(z, .) be the solution of (2.3)
at time ¢ € (0,7T). We introduce a pseudo-time variable 7. Initialized with ¢, we consider the
following Hamilton—Jacobi equation

a
8—(p(r,x;t) +v-Vo(r,x;t) = sgn (g, x)) + Alr, x:t) g (p(r,x:;t)) ae.in (0,4+00) X A,
T

00,x;t) = ¢(t,x) a.e.in A.

(2.4)
The advection vector writes v = sgn(¢)Ve/ |Vo|, and sgn (§) denotes the sign function having
the values 0, —1, +1 on I, inside 2 and outside €2, respectively. The Lagrange multiplier A(z, x;¢)
helps enforce the constraint of a local constant volume at each x € A. The function g(¢) localizes
the mass correction in the vicinity of the interface, and it depends on the Dirac measure §(¢). As a
consequence, the stationary solution satisfies |[Vg| = 1 meaning that (oo, .; ) is a signed distance,
which is taken as the new level set function ¢(z, .). More details about the numerical discretization
of (2.4) are available in [14, 47]. For a given ¢ > 0, the Heaviside function, the sign function, and
the Dirac measure are regularized in a banded region of width 2¢ around I'. They are respectively
substituted by 47, &, and sgn,. For all ¢, they are, respectively, defined by

0, if p <—¢
. L%
w ) g Sin (—) B
@ =9 (148 el gl <e sgn,(p) = 27:(p) — 1,
2 £ T
1, otherwise

8¢ (p) =

d.7z; 1
2p) = — (1 + cos (ﬂ)) if |p| <&, and O otherwise.
do 2¢e €

2.4. Governing equations

In this section, we state the equations governing the model. The Canham and Helfrich energy reads
as follows:

7(@) = /a ) “(@) — Hopas, @5)

The RBC’s membrane I is described by Equation (2.2), and the energy [J(2) has to be encoded
in terms of ¢. Let V denote the space of the admissible shapes. A shape optimization problem
describes the equilibrium of RBCs:

Q = arg inf J(w) with V = {w C A / ds = Agp and / dx = Vo} (2.6)
w o

weV

where Ay and Vj represent the surface area and the volume enclosed inside the cell, respectively, at
time ¢ = 0. In the two-dimensional case, A and Vj represent the perimeter and the inner area of the
cell, respectively. Because the spontaneous curvature has no effect on the equilibrium shape in the
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two-dimensional case [25, 26, 48], we assume herein that Hy = 0. The constrained problem (2.6)
is transformed into a saddle point problem, and we introduce the Lagrangian functional:

,C(a);a,q)=\7(a))—i-o(/8 ds—Ag)—i-q(/ dx—Vo), Y(w;0,q),

where o and g represent the Lagrange multipliers corresponding respectively to the surface and
the volume constraints. The solution (2; p,A) € (A;R,R) is a saddle point of £, and the
problem writes

(R2:A, p) = arginf sup L(w;a,q). 2.7
wCAoeR
qgeR

In order to solve (2.7), we use a gradient method, and we consider the notion of shape derivative
introduced by [49]. We follow the approach developed by [50]. Let €2 represent a smooth refer-
ence domain describing the RBC. We consider a sufficiently regular shape deformation u such that
the shape Q2 is deformed to 2, = I+ uw)(R) = {x+ u(x) € A : x € Q}, where I represents
the identity transformation. The shape derivative of 7 (£2) is defined as the Fréchet derivative at 0 of
the application # — 7 ((I + u)(£2)). Thereafter, we use the classical notation of the shape deriva-
tive in the direction u, and the latter derivative is denoted D¢, 7(2)(u), see, for example, [34, 50]
for more details. Using the shape differentiation tools [32, 33, 43, 49, 50], we computed the Fréchet
derivative of (2.6) in a previous work [34]. It reads

1
D, L(w; A, p)(u) = / {p + AH + E(H — Hy)[AK — H(H + Hyp)] — ASH} u.nds.
r
To minimize the Lagrangian £, the descent direction is given by
1
u= {ASH — E(H — Ho)[AK — H(H + Ho)] — p —/\H} n.

Let ¢ design the time parameter that corresponds to the descent stepping [50]. We update the shape
as wy(t) = (I 4 tu) (w) and we obtain the following:

2
£@u 034 p) = L@ )~ [ {ASH ~ 3 (H ~ Ho)l4K — H(H + Ho)l - p _w} as + 0(),

which ensures the decrease of the objective functional. The vector u represents the advection field,
and it depends on the level set function ¢ and on the geometrical parameters H, K, and n. These
quantities are initially set on the membrane I". However, they should be encoded in terms of ¢ and
then extended to the entire computational domain A. Equipped with suitable initial and boundary
conditions, we obtain the following Hamilton—Jacobi problem:

P : find ¢, p ,and A such that

0 1
a—(f + |:AsH — E(H — Hy)[4K — H(H + Hy)] - p —AH:| n.Vy =0, in (0,7) x A
(2.82)
/ dx =V,,  in (0,7) (2.8b)
Q
/ ds = Ay, in (0,7)
a2 (2.8¢)
90,) =@o()in A and @ =¢pon (0,7)x XZ_.
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 80:397-428
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2.5. Variational formulation

We present in this section the variational formulation of (2.8a), (2.8b), and (2.8c). At each time ¢,
we assume enough regularity of the shape Q2. To encode the vector of the gradient descent in terms
of the level set ¢, we prove that

V5|Vl
Vol

Indeed, by using the Einstein sum rule for repeated indices, we have

H(H?—-4K) =2HV. ( ) — V.(H?n). (2.9)

Vn : VnT = 8_,~n,- Bin_,- = 8j (niain_i) - nia,- (Bjnj)
=V.[(m-V)n]—n-VH =V.((n-V)n) — (V- (Hn) — H?).

The Gauss curvature writes 2K = H% — Vn : Vn”, for example, [34]. We obtain

H(H?—-4K)=H (-H*+2Vn:Vn') =2HV -((n-V)n) — H> - 2Hn-VH
=2HV-((n-V)n)—V-(H?n).

00, 0
Moreover, the equality 9;|Ve| = 9,/ Vp.Vo = % leads to
%
dig |Vld;0ip — 0i9d; |V 1 dip Oy
(Vn)~-=8~( )= = 0;0;¢0 — —— k0@ ).
vl [Vgl|? Vol U777 Vgl [Ve|

Then we get [Vg|Vn = (I—n ® n) - VV@. Because we have V(Vg - Vo) = 2(Vp - V) Vo +
V(Vp) - Vo _ 1V(VeP)

2V Arot(Vp) = 2V(Vp) - Vo, we obtain VVg.n = = = V|Vo|.
: Vol 2 |Vyl
Accordingly, we obtain (n.V)n = ﬁ (I-n®n).VVyp).n = ﬁ I-n®n)(VVe.n) =
@ @
V|V
|svl T)l Finally, Equation (2.9) holds. Let us consider a test function &£. The variational
@
formulation reads
0
/ a_fé +/ [2AsH + H (H?> — 4K)] |Vgl§ =0, VE € Hy(A). (2.10)
A A

Let ¢min and Qg represent the maximal and minimal values of ¢, respectively. By using the
co-area formula, see for example [51], and the Green transformation, we obtain

Pmax
[ |V<p|AsH§dx=/ / AgHE dsdz
A % o(x)=z

Pmax
:/ —/ VSH-Vdes—i—/ EHn-VgHds | dz
Omin p(x)=z o(x)=z W—o

= _[ |Vo|Vs H.V,E dx.
A

Because the surface projection operator verify (I —n ® n? =0I-n® n)T = I—n®n), we
obtain/ |Vo|AsHE +/ |Vo|VsH - VE = 0. Using Equation ( 2.9), we obtain
A A
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Vs |Vl
Vol

[ el —axoe =2 |V¢|Hv.( )s—/ Vol V.(Hn) &
A A A

VIVe|

Vs (H|V
AAACIIE

:/I\(H2V¢—2HVS|V¢|)-VS—2/

+
A Vol

Using the equality |V¢|VsH + HVs|Vo| = V(|Ve|H), Equation (2.10) reads
dg 2
=2 Vs(HIVe Ve + | HVe v

= 0.

—z[ VIVOL G (vt +

Nz IVI

To facilitate the numerical discretization, we write a mixed problem to decrease the derivation order
of ¢ in the previous equation. Let us consider the mixed variable v = —H|Vg|. For (§£,¢) €
HJ(A) x H'(A), we obtain the following:

/AESwL/Asz.VEJr/ 2|$2|2w.v&+/ V||VV7|.sz$

2
+/ 2|V |3V¢’ V(VeDE - /p|V¢|E+/ AYE =0

@2.11)

v 1
—_ Vv = 0. 2.12
fuwf /|V¢| ¢-Ve @12

From a numerical point of view, we give a particular attention to the skeleton of the level set
function. In fact, the normal vector n becomes discontinuous when crossing this area, and a subdif-
ferential of the level set function exists. In Figure 2, we show these particular areas in the cases of
some elementary shapes. Observe that | V| has very small values, that is, around the machine pre-
cision. Therefore, the assembled matrix of the linear system of the discretized problem may become
singular if some nodes are located in the skeleton. To address this difficulty, we decided to avoid the
division by |V¢| in the weak formulation (2.11 and 2. 12) Let us consider two 1ntegers (k,1) € N2,
and we introduce the test functions (£, ) € H} (A)x H'(A) such that§ = [Vo|'Eand ¢ = |Ve|¥¢.
We obtain:

I £ 1 vz, I 1-2,,2 : I+1F
[ 1vol'aE + [ 1901V VE+ 3 [ 1961 202v0vE - [ piveriE
- - .
+ [ QDI VIVpLT. 08+ 5 [ A+ DIVl 92 VeV (Veli+ [ avIVelE =0
A A A

/A|V¢|k—1w5—/A|V¢|k—IV¢.VE=fAk|w|k—2w'V|V¢|E.

By setting / = 3 and k = 2, we can avoid the division by |V¢|. In what follows, we drop the tilde
symbol to make it easier to read. Let us introduce the mixed variable y given by

y = V|Ve| € Ho(div, A) := {r e (L2(A)? : V-7 € L2(A)andT - vyp =0 on aA}
Finally, the variational formulation reads as follows:
given @5 and @o regular enough; find ne L2 ((0, 7); L>(A)4),y € L2 ((0,T); Ho(div, A)) .y €
L2((0,T): H'(A)),and ¢ € L ((0,T); Hy (A) N W-2°(A)) such that

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2016; 80:397-428
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4
\ /&5

Figure 2. Singularity zone in the skeleton. (left) Level set ¢ plotted in elevation (zero-level set col-
ored in red), (middle) zero-level set I', and (right) norm of the Ggadient |V¢| and its projection in the
horizontal plan.

/A|v(p|n.g=/AV<p.g, Vge(LZ(A))d (2.13)
/ P.T = —/ V|V - T, VYt € Ho(div, A) (2.14)
A A

[ vove— [ 1veveve=2 [ Gope veen'w 2.15)

1
[ VeV ve+ [ VoPas+ 3 [ 1velv?ve-ve
A A A

—/ p|qu|4z+4/|V<o|2(vsw-y>z+ 2/ wz(w-wH/ AYIVePE =0, V¢ e HY(A).
A A A A 2.16)

2.6. Refinement and mesh adaptation technique

Our approach bases on the work of the authors of [52, 53], and we use the bidirectional anisotropic
mesh generator BAMG [54, 55]. We briefly describe the method, and we refer to [14, 56] for further
details. Let us consider a field E(¢) suitably computed from the solution ¢, and we introduce
the metric tensor given by the Hessian matrix of E [54]. The mesh is adapted to the computation
of B such that the interpolation error becomes uniformly distributed. It means the error becomes
constant over all the mesh elements in the directions of maximal and minimal stretching, while the
maximal and minimal directions of stretching have to be adjusted to the directions of maximal and
minimal error. At each time ¢, we consider a partition .73, such that A= Kéjg (Section 3.3). Let the
h

subscribes £ and x stand for the reference and the deformed configurations, respectively.
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Let Xk : § —> x = Mké& + tg be the affine transformation that maps the reference triangle
K¢ into K as depicted in Figure 3, where Mk and tg represent the Jacobian of the transformation
Xk and a translation, respectively. Because the triangle K is not flat, the matrix Mg is asymmetric
and invertible, and it admits a singular value decomposition (SVD), for example, [S7-59]. The SVD
expresses the matrix Mg as a product Mg = R};A x Pk, where Rg and Pk are orthogonal and
Ak is a diagonal matrix with positive entries. Because the reference triangle K¢ is equilateral, the
transformed triangle K is inscribed in the ellipse (x — tK)T R};A}ZR k (x —tg) = 1. Following
[54, 55], the interpolation error is estimated by h%’vlvT (VVE)v|, where hg v represents the length
of K in the direction v. We use piecewise linear and continuous functions to approximate the field
E over each triangle K € .7, while an L? projection enables then to compute the Hessian VV 2.
Let (Ay,. A X2) and (v, v2) design the eigenvalues and the eigenvectors of VV E, respectively. The
mesh adaptation consists in shrinking K in both directions v, and v,. The directional sizes sy,
and h g v, are then adjusted such that the interpolation error becomes equidistributed. In the present
work, we need to refine the mesh in the vicinity of the RBC membrane to accurately compute geo-

n

metrical quantities like H, 7, and the surface operators. Accordingly, we choose E = Y 8.(¢')
at each time ¢”. When big deformations are observed, we also add a second term thatlrerf)résents a
prediction of the solution at time ™1 (Section 4.2.3). Regarding the regularization parameter &, we
choose it proportional to the local value of the mesh size e(x;) = 2./2meas(C;), where C; is the
finite volume cell centered in x;; it joins the barycenters of the triangles and the middle points of
edges passing through x; (Figure 4).

Thus, the remeshing procedure can provide an adaptive mesh with high mesh density in the sur-
rounding of the membrane. In general, the aspect ratio (i.e., stretching) of the mesh triangles can
be arbitrarily large, depending on the local value of the Hessian of the criterion E [56]. To evalu-
ate the quality of the mesh elements, we define the aspect ratio of a triangle K € .7, as the ratio
between the longest edge length and the shortest edge length in K. In Figure 4 (middle), the mesh

reference configuration actual configuration

Figure 3. Transformation from the reference element K¢ to the triangle K in the actual configuration.

Figure 4. (left) Finite volume cell C; centered in the vertex x; . (middle) Adapted mesh in the vicinity of the
RBC with 10732 triangles and 5407 vertices. (right) Adapted mesh in the vicinity of the RBC with 46 070
triangles and 23 048 vertices.
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quality is characterized by an aspect ratio in [1.01, 3.04] (isotropic adaptive), while the mesh has an
aspect ratio in [1,26.20] in Figure 4 (right) (anisotropic adaptive). We note that further improving
the mesh anisotropy and the alignment with the RBC membrane represent an interesting topic that
is definitely beyond the goal of this work.

3. NUMERICAL APPROXIMATION

3.1. Time discretization

To discretize the problem (2.13, 2.14, 2.15, and 2.16) in time, we divide the interval [0, T'] into N
subintervals [t,, t,+1) of constant step At wheren = 0,..., N — 1. For any n > 1, the unknowns
¥ and " at t" are computed recursively. For a given function F € C!([0, T]) and ¢ € (0, T), we
choose a second order backward differentiation formula:

3]:n+l _ Fn 3]:n+1 —4Fm + ]:n—l

"~ ——— ifn= "(t) ~ i .
]—'(l)N2 A7 ifn=1 and F(t) AT ifn>1

Hence, one can expect that the error follows the evolution O(h%) + O (Atz) where k represents
the degree of the finite element discretization in space. The theoretical analysis regarding the error
estimation is preserved for a forthcoming work. We introduce the weighted multi-linear forms

m(w, &,¢) = f wEe forall w € L®(A), £ € L?>(A) and ¢ € L?(A)
A

a(T,£,0) = / (TVE)-Ve  forall T € (L®(A)?*? e H'(A) and ¢ € H'(A).
A

A semi-implicite scheme is used for the time discretization of (2.15) and (2.16). We obtain

Py given g}y € H'(A) N WER(A), ¢ = @5 € L2(A),n" € L¥(A)?, y" € Ho(div, A) N
L®(A)? and (p", A") € R?;

find "1 € H'(A) N L*™(A) and ¢" ! with "1 — @2, € Hy(A) N WH(A) such that

m (V" y" 1 &) —a (IVe" L o" ! §) = 2m (Vo".p". 1,§)

3 1
n3q_ n n+1 ni3 n+l - n ny2 n+1 _
a (V" PA—n" @ 0"y 0) + m (V9" g 0) + Sa (Ve (0P L L E) =

Som (Ve (46 — ") 1.0) = m ("9, 1,7)

(3.1a)

—m (4|Ve" > I—n" @n") Vy".p" +2(¥")* (Vo™ - y") — p" V" |*. 1.7) (3.1b)

forall € € H'(A) and V¢ € Hol(A).

3.2. Algorithm for the saddle point problem

To compute the saddle points of the Lagrangian £(2; p,A), we use an Uzawa-type algorithm
[60—63]. This algorithm performs in two steps: it first minimizes the Lagrangian with respect to the
shape, and then the Lagrange multipliers are computed by minimizing the dual energy &*(p, A)
(Algorithm 1). The small step length § helps to perform the descent in the direction opposite to the
gradient of &*(p, A). The stopping criterion should be given by the residual. At each ", we compute
the two residuals res’7; and res; of Equations (3.1a) and (3.1b), respectively. We define the global
residual by [res”| = /[res}|? + [res’,|?, where | - | denotes an appropriate norm (Section 3.3).
Remark that, by using a constant descent step §, the Uzawa algorithm only preserves the constraints
in the convergence. However, they can be verified if the Uzawa algorithm is used with an opti-
mal descent step at each iteration. The Uzawa algorithm with the exact descent step is shown in
Algorithm 2.
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Algorithm 1 Uzawa with a fixed descent step &

1: set tolerance € and initial conditions Q°, p°, and A°
2: from the known values Q”, p”, and A"
3: fort = nAt,---, T do

4:  compute Q"1 C A such that L(Q"T1; p", A") < L(Q"; p™, A")
5. set&*(p,A) := —L(Q"T!; p, 1) and compute
(p"'H,)L"'H) — (p",l") _ SVP,A&’* (pn’/\n)
6: compute residual |res” |
7. if [res"T!| < € then
8: break
9: endif
10: end for

Algorithm 2 Uzawa with optimal descent step

1:

set tolerance € and initial conditions

2: from known values 2", p”, and A"
3: fort =nAt,---, T do

4: compute Q"1 C A such that L(Q"TL; p™, A") < L(Q"; p™, A™)
5. compute (p" T, A"*1) = (p*,A*) such that V = Vy and 4 = Ag
6: compute |res” ]|

7. if [res"T!| < € then

8: break

9: endif

10: end for

Computation of the optimal Lagrange multipliers. In this section, we proceed to compute the
exact values of the Lagrange multipliers p* and A*. Using (2.9), the problem P (2.8a, 2.8b, and
2.8c) writes

+ |:ASH+HV.|:

VsVl
Vol

2

d .
E/;\%”((p) =0 in (0,7)

d

dl/1_o in (0, 7).

By using the Reynolds formula, Equation (3.4) is equivalent to

/v u_0¢>/Hu n—O(i)p/H—F)L/ H?
r

v, |V
/HAH+/HV ( 5| w')——/HV (H?n)
Vol

In addition, Equation (3.3) is equivalent to

Copyright © 2015 John Wiley & Sons, Ltd.

[0 1
5(p) = /__ 0o /1+A/H
/a() v 30 Vgl PITA |
V|Vl 1 2
= AH+/HV.[S—}——/V.Hn.
/rs r Vol 2 Jr (H7n)

Int. J. Numer. Meth. Fluids 2016; 80:397-428
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(3.3)
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By using the Green’s formula involving surface integrals and knowing that n.VgH = 0, we have

/A H = /HnVH—Oand/HA H——/ |Vy H |?. Hence, we obtain the system:
Vs |V 1
p/H—i—)L/HZ /|VH|2 /H2 [ 5| ¢|:|——/HV.(H2n)
r r Vel 2Jr
V|V 1
p/1+A/H=/HV.[ d (p|i|——/V.(H2n).
r r r Vol 2Jr

Finally, the optimal Lagrange multipliers p* and A* read as follows:

e () o Ao e fom (1) 10

[ () [ ()
A ) s

(3.5)
. . . . . . Vs|Vol _
Equation (3.5) is simpler if ¢ is a signed distance where HV. =
v.[Vol r Vol
/ H?V. FV—T) = 0. However, we assume the membrane I" never touch the skeleton of the
2

function ¢. Therefore, | V| is only evaluated in the vicinity of I" where, thanks to the redistancing
step, the level set is close to the signed distance. Consequently, the division by |V¢| in Equation
(3.5) does not induce numerical singularities.

3.3. Space discretization by finite elements

We proceed with the space discretization of the problem P (3.1a and 3.1b). We consider a partition

T of A consisting of geometrically conforming open simplicial elements K such that A = Ugeg;,.

Leth = Ir{na; diam(K) be the mesh size if the mesh is regular. If the mesh is adapted, we compute
[S73

the equivalent space discretization step ey = 1/+/N,, where N, represents the number of nodes
in the adapted mesh. A piecewise continuous finite element approximation is considered for the dis-
cretizat.ion of both ¢ anq V. Let ¢y and ¥ pe the §pati:a11 app.roximation of " and ¥", respectively,
at the time step ¢”. We introduce the following finite-dimensional spaces:

Hp = {¢ € C°(A) : Cnk € PI(K). YK € G}, Gp = Nj N Ho(div, A),
Nj = H, Vi(go) = Hy N HI(A) + m (&)

where 7, represents a Py Lagrange interpolant on dA. Given §, € H 1/2(dA), the harmonic relevant
£o in the space H!(A) satisfies the following problem

Afp=0in A  suchthat & = & on 0A.

Discretization of Equation (2.13). Let us consider ¢; € Vj, (pya), and we proceed to compute
n; € Nh. The leV.el set gradient vector Vo) € (Po)?, YK € 9. Let us denote by gy by L?
projection of Vg}' in Ny, and we have

/AgZ-S'h =/AV¢Z-5h, Von € Nj. (3.6)
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To assemble the left hand side of Equation (3.6), we use the lumped mass matrix, and the numerical
computation of g7 is straightforward. Accordingly, the numerical approximation of the unit normal
vector is given by

gz(-xi) . n
e if Xi 0

n;(x;) = |7 (xi)] }gh( l)| 7 (3.7)
0 otherwise.

Discretization of Equation (2.14). We consider an explicit scheme for the numerical approximation
of p". Given the discretized level set function ¢; € Vj,(¢yy ), the problem reads find y} € Gy such
that for all T € Gy, we have

/y;’,.r+/ |Vgp| V-7 =0. (3.8)
A A

Finally, with an exact evaluation of the multi-linear forms, the discrete problem P; (3.1a and
3.1b) reads

Pl o given ¢p € Vi(po), ¥y € Hy, nj € N and pj) € Gy,
find (¢t v/ *") € Vi(po) x Hy, such that ¥(¢,£) € V,(0) x Hy, we have
i L6 —a (Ve | Lo E) = 2m (Vej v} 1.£).

(|Vg0 P (1—n} @), yr*, §> 3|V—¢Z}3 optl g
h h M)V, INEE ’

v vor|?
+a (’ wh}(wh) | 7/ )=m<%(4¢2—¢2_1)71,§)

—m(#Vep P (1= nj, @ ) Yy + 2 (vi)” (Vehoi) = p" [Vei|* + 23 [ Ver [ 1.¢).

Using the finite element environment Rheolef [64], the exact evaluation of the multi-linear forms in
P 1, 1s not feasible. However, the P Lagrange interpolant 7, is used to approximate the weights in
the previous forms, and the approximated problem reads as follows:

m |V(ph ,

Pe.n - given (ph € Vi (¢o), wh € Hh,nh € Ny and yh € Gy,
find ( ntl w"H) € Vy(po) x Hy, suchthat V(¢,§) € V,(0) x Hy,, we have

m (mn [[Vey|] v 8) —a (mn [|Veu| 1] ”“,5) = 2m (w4 [Voh-¥}] . 1.€). (3.9)
a ([ Iver* (= my @ m)] v .0) + o (o [|Vh ] o 2) +
s (o [19eR | ) 1) ot 1.8) = S (V6 Gaf = 7)) 1.6) -

(”" [4|V¢’h| (I—np @) Vy-yn+2 () (Vep - vi)—p" |V‘PZ|4+/\"%7 W‘/’ZP] ’ 1@)'

(3.10)

Numerical computation of the residuals. The previous finite-dimensional linear system P;
involves the following matrix structure:

+1
(5 (5)-()
1
crop) \ept )~ \ay
In the present work, this system is solved using the LU factorization of matrices performed by the

UMFPACK library. Because the weighted bilinear forms depend on (‘IJZ <I>Z) T at the previous time
step, the linear system needs to be assembled at each time step. The RBC problem 7, (3.9 and
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3.10) has a stationary solution, and the convergence criterion is based on the computation of the
residual. Let us first consider Equation (3.1b) that includes the time derivative term. We denote by
res’}’ ; the residual evaluated with the discrete H~! norm at time ¢”. For all ¢, € V}(0), the residual
is given by

resy i = (ARWh + Boh — F3l) Ly -

where A}, B, and F are the discrete operators corresponding to the forms in (3.10). The problem
admits a stationary solution, and the residual verifies lim, . res} , = 0. For all {; € Vj(0), the
discrete norm of the residual, simply denoted | - |Hh_1 , is defined by duality such that

n
. < é‘h,resl’h >V, (0),H;! B ;
resy |, = Sup o = sup < Vh.TeST >y, () )
h En €V, (0) h1V(0) vy € Vi(0) :
[valv,0) =1
= max < ¢;p,rest, > —1=  max ’res” )|,
i<dim(V,©0) Lh = Va@B ™ cpior (v, 0 | 1R

where m represents the normalized nodal finite element basis of Vj(0). The integer dim (V(0))
represents the dimension of Vj(0), and #dof (V(0)) denotes the set of nodes associated to the
degrees of freedom of V}(0). Analogously, the norm of the discrete residual res’y Ih corresponding
(3.9) computed.

3.4. Numerical verification of the volume and area constraints

Let us consider a RBC having reduced area y = 0.75, and we solve the problem P; 5 (3.10) fol-
lowing Algorithm 2. We plot in Figure 5 the evolution of the energy of Canham and Helfrich and
the relative error in area and perimeter. Although the energy 7 is decreasing, results show that the
constraints of area and perimeter are not verified and an error is accumulated significantly over
the iterations. Remark that these errors are expected, because the constraints (2.8b) and (2.8c) are
respectively replaced by (3.3) and (3.4) to allow the computation of the Lagrange multipliers. How-
ever, the two equations are equivalent up to a constant value that could represent the numerical errors
because of the rounding and the interpolations between spaces. Thereafter, we need to substitute
these errors by adding the appropriate corrections when computing the optimal Lagrange multipliers
p* and A*. The corresponding analytical computations will be provided in the following paragraph.

A posteriori correction of the Lagrange multipliers. To overcome the mass preservation prob-
lems, we introduce two parameters &}, and &’y needed for the error corrections in (3.3) and (3.4),

6.4 T T

Q) — W)V ——
" 1y p—

6 L L 1076

iteration iteration

Figure 5. Preservation of the volume and the area. (left) Evolution of the energy of Canham and Helfrich
and (right) plot in the logarithmic scale of the relative errors with respect to the iterations.
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AO — / 1ds / 1dx — V()
n n n

respectively. At time ¢, we have ¢’} = ————— and ¢}, = Al . Therefore, P (2.8a,

2.8b, and 2.8c¢) is replaced by the following:

9 V|V |
a‘p [A H—HV. ( |S$ T')—Ev-(mn)—p—w] Vol =0  in (0,T) x A,
¢

4 / H@) =€, in(0.7),
dt Ja

d
E/F1=e';1 in (0, 7).

By following the steps performed in Section 3.2, the corrected Lagrange multipliers read as follows:

afia
o for= ()

ol o
Jolfefee=(f))

Remark that the corrections of the Lagrange multipiers can be interpreted as a posteriori control
on the values of A* and p* (3.5). Thus, the a posteriori corrections A" and dp” of the Lagrange
multipliers vanish if the errors 7, and &’y are null. The modified algorithm used to solve the saddle
point problem is detailed in Algorithm 3, and we illustrate a full description of the numerical strategy
in Figure 6.

A =A% 461" with

@3.11)

p=p*+p" with

Algorithm 3 Uzawa with a posteriori control
1: set tolerance €

set initial conditions (Q°; p°, 1°)

from the known values Q”, p”, and A"

fort =nAt,---, T do
compute Q71 such that
E(Qn-i-l;pn’)tn) < ﬁ(Qn; pn’kn)
compute (p"*1, A7) (3.11)
compute |reshJrl |H_
if |resh+1|H_

break

end if

: end for

1 < € then

DY ® 3o

—

4. NUMERICAL SIMULATIONS

4.1. Software implementation

The presented method has been implemented using the Rheolef environment* [64], which is a gen-
eral purpose C++ library for scientific computing, with special emphasis on finite elements and

¥Rheolef - http://www-ljk.imag.fr/membres/Pierre.Saramito/rheolef/.
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Figure 6. Illustration of the numerical methodology.

parallel computation. Rheolef provides support for distributed-memory parallelism via MPI®.
Rheolef relies upon the Boost!, Blas', and UMFPACK™ libraries for much of its functionality.
Rheolef bases on Scotch for distributed mesh partitioning’". The reduced order problem has been
numerically solved with the free software package GNU Octave [65]%. The computational results
are displayed graphically using the software Paraview®®, whereas the plots are generated using the
software Gnuplot™.

4.2. Validation of the numerical solver

We present in this section a set of numerical examples illustrating the main features and the accuracy
of the numerical method. We first focus on our mesh adapting tool.

4.2.1. Example 1: the test of Zalesak’s rigid disk. We first study the motion of a rigid body under
the effect of a prescribed rotational motion. This test has been initially proposed by Zalesak [66]. It
has become one of the most common test for interface propagation used to test numerical methods,
for example, [67]. We are interested in the rotation of a slotted circle with a radius of 1/5, a slot depth
of 3/10, and a width of 1/10. The slotted circle is initially centered at (1(_).5 ,7/10), and we consider a
rotational velocity field given by u = (3%(50 —¥). 317 cos(x — 50)) . The computational domain
is the square [0, 1]2, and the slotted circle completes one revolution after one period. Several mesh
sizes were considered to check the mesh dependency, and the convergence properties of our method.
We plot in Figure 7 the convergence of the error between the computed solution ¢; and the exact
solution ¢ with respect to the equivalent space discretization .4, = 1/ /Ny, where N, represents
the number of nodes in the adapted mesh (Section 3.3). The error is plotted in the logarithmic
scale, and results show that we obtain better convergence slope first by adding the mass correction

$Message passing interface - http://www.mpich.org.

1Boost libraries - http://www.boost.org.

'BLAS, Basic Linear Algebra Subprograms library - http://www.netlib.org/blas.
“*UMFPACK routines - http://www.cise.ufl.edu/research/sparse/umfpack/.

T Scotch - http://www.labri.fr/perso/pelegrin/scotch.

#Qctave - www.gnu.org/software/octave/.

$3Paraview - http://www.paraview.org

M Gnuplot - http://www.gnuplot.info.
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7x 107!

regular mesh, without correc
regular mesh, with correcti
adaptive mesh, with correction

| 7(0) — He(on)llo.2,a

0.102
107!
0.321

4% 1072

1.5 % 1072 1.5 x 1072 1.5 x 1071

hegq

Figure 7. Example 1: (left) contour plots of the rotating slotted circle after one rotating period: exact solu-

tion (black and dotted), regular mesh without mass correction (green and dashed), regular mesh with mass

correction (blue and dotted line), and adaptive mesh with mass correction (red and solid line) and (right)
convergence properties in log-log scale.

Figure 8. Example 1: adapted mesh in the Zalesak’s test.

in the redistancing problem and second by using the mesh adaptation technique. Regarding the
mesh adaptation, we consider the hessian matrix of the field 8} = & ((pZ) + 8¢ ((p;l’_l). Figure 8
shows the accuracy of our meshing tool, in particular concerning the capture of the corners in the
slotted disk.

4.2.2. Example 2: the test of Leveque’s deformable disk. We study the advection of a deformable
object in a shear flow field. This problem is used to test the ability of the numerical method
to resolve and maintain thin filaments. This allows to capture, subsequently, some particular
biconcave shapes of RBCs. This test was proposed by Leveque [68], and it is widely used
to test numerical methods and strategies [69]. The computational domain is A = [0, 1]2.
We consider an initial deformable circle having a radius 0.15 and centered in (0.35,0.35).
The circle is advected in a vortex with a periodic velocity field given by u(x,y) =
(2(sin(nx))zsin(27ry)sin(nt),—(sin(ny))zsin(nt)sin(271x))T. It reaches the maximum of
deformation at the middle of the time period. The velocity components change then their signs, and
the deformable circle again reaches its original position at the end of the period. This test shows the
ability of our mesh technique to detect the thin filaments, as depicted in Figure 9.

4.2.3. Example 3: mean curvature motion. We study the mean curvature motion. We are interested
in the time evolution of 'y = 92 such that, at each time ¢ € (0, T'), the curve I'(¢) = d2(¢) moves
with a normal speed given by the mean curvature. The advection vector is given by u = —Hn. This
is a shape optimization problem that consists in minimizing the perimeter:
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Figure 9. Example 2: some adaptive meshes obtained in the test of Leveque’s deformable circle.

Q = arg min / 1 ds.
w ow

The shape of a circle following the motion by mean curvature is well known. The initial circle
remains a circle and shrinks into a point in a finite time. We solve this problem to test the mesh
adaptation technique for a problem which also evolves the mean curvature. In fact, the mean cur-
vature is a quantity that plays a significant role in the modelization of RBCs, and we need to
compute it in an accurate way. To adapt the mesh, we choose the metric as the hessian of the field
BT = 8. (¢]) + 85 (97 7%%) + 8 (¢p") where ¢} *% represents a first approximation of the
solution at t"*!, that is, a prediction, computed using the previous mesh generated using the crite-
rion EZ’l. Figure 10 shows the adapted meshes obtained using the previous criterion. We plot in
Figure 11 the convergence of the error between the computed solution ¢y and the exact solution ¢
with respect to the equivalent space discretization /.4. The error is plotted in the logarithmic scale,
and results show that the convergence slope is improved by the mesh adaptation.

4.3. Numerical results in the two-dimensional case

In this section, we provide some numerical results of the equilibrium shapes of RBCs in the two-
dimensional case. Because we do not dispose of an analytical expression describing the RBC’s shape
in the equilibrium state, a validation of the adaptive finite element method can be obtained by solving
the reduced order problem (A.8). By varying the reduced area of the cell, we compare between the
results obtained by the finite element solver and the results of the reduced order model as illustrated
in Figure 6. Concerning the numerical computations in the two-dimensional case, through a re-
scaling step, we may provide shapes having a fixed perimeter Ao and variable surface area. In all the
results, we consider the RBC’s perimeter at time ¢ = 0 to be 27r. We give a particular attention to the
preservation of the area and the perimeter of the RBC, because it represents an important numerical
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Figure 10. Example 3: (left) adaptive mesh and zoom showing the effect of using the adaptive criterion.

7x 1072 .
with reguler mesh v
with adaptive mesh o
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-".“
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Figure 11. Example 3: (left) evolution of a circle that shrinks into a point in a finite time and (right)
convergence properties in the /2((0, T'); L?(A)) norm. The logarithmic scale is used.

difficulty related to the Eulerian methods. We first consider the numerical simulation of a biconcave
RBC having a reduced area y = 0.75. Concerning the convergence to the steady state describing
the RBC’s equilibrium, Figure 12 (right) depicts the convergence history showing the discrete H ~!
norm of the residual res}, as described in Section 3.3. Results show that the residual reaches a plateau
that should decrease with respect to At. In a similar way, we plot in Figure 13 the convergence
history of the relative errors in the L2 norm and the residual evaluated using the L' and L? norms
for various values of the time step. An element that deserves more attention is the preservation
of the perimeter and the area enclosed inside the cell. For a particular numerical computation, the
quality of the numerical result and the preservation of the constraints are affected by the choice of
time step A¢. Our concern here is to test the preservation of the constraints of perimeter and area
for different time step sizes. In this numerical experiment, we focus on the equilibrium of the same
RBC having a reduced area y = 0.75 starting from the same initial shape and using different time
step sizes, see Figure 14 (left) for an illustration of the equilibrium configuration of the cell. We
plot in Figure 15(left) and Figure 15(right) the evolution of the relative error in the area and the
perimeter. Numerical results show that errors are preserved remarkably well, and they are smaller
than 10™°% when the time step size is smaller than 10~7. We verify also that the convergence is
obtained for the two Lagrange multipliers p and A. Figure 12(left) shows their plots for a RBC
having y = 0.75 and using a time step size At = 5 x 1072, The different simulations are all
stopped when the residual |res;’l |H_1 reaches the tolerance criterion € = 107> The numerical results
Pconfirm, as expected, that the L}égrange multipliers converge to the constant values p = 3.3 and
A = —0.95 in the steady state. In the following, the time step is set equal to At = 5 x 10~7. We
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Figure 12. (left) Evolution of the Lagrange multipliers. The y-coordinate is scaled logarithmically and (right)
convergence in the logarithmic scale of the residual with respect to the iteration number.
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Figure 13. Convergence in several norms of the residual and the error using two different time step sizes:
(left) At = 1078 and (right) At = 1077 Results are plotted in the logarithmic scale.
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Figure 14. Equilibrium shape of a red blood cell having y = 0.75 : (left) comparison between the finite
element solution (FEM) and the solution given by the reduced model (ODE) and (right) minimization of the
Canham—Helfrich energy.

perform a qualitative comparison with the results obtained by solving the reduced order model (A.8).
Regarding the numerical resolution of (A.8), we assume that the grid is uniform, and we consider
the spatial discretization parameter N = 10* that corresponds to a mesh grid size Ax = x 7/N.
The solution of the ordinary differential Equation A.9 having the same reduced area y = 0.75 as the
RBC is obtained by setting the parameters A = —0.95, p = 3.3, and w’(0) = 0.296. A satisfactory
agreement is observed with respect to the finite element solution in Figure 14(left). Figure 14(right)
plots the evolution of the Canham—Helfrich energy with respect to the iterations. The tracing shows
that the energy is decreasing before getting a stationary constant value equal to 5.68.
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We now present some other computational results that illustrate various shapes of RBCs and
the corresponding reduced areas and energies of Canham and Helfrich. This experiment given in
Figure 16 is designed to validate the equilibrium shape of a cell having a reduced area y = 0.85.
The finite element results shows that the energy of Canham and Helfrich is decreasing with respect
to the iterations, and the corresponding final energy value is 4.64, as depicted in Figure 16(right).
The solution of the reduced model having the same reduced area y = 0.85 is obtained by using the
following parameters: N = 10*, 1 = —0.95, p = 3.3, and w’(0) = 0.48. The two equilibrium
shapes are almost the same, as shown in Figure 16(left).

The next experiment concerns the equilibrium shape of a cell having a reduced area y = 0.65.
The solution of the reduced model having the same reduced area is obtained by solving the ordinary
differential Equation (A.8) using the parameters N = 10*, 1 = —0.9, p = 3.2, and w’(0) = 0.296.

1 10~12 L
10% 6 x 10% 10° 3 x 104 6 x 10% 10°

iteration iteration

Figure 15. Evolution of the relative errors for different values of A¢. The y-coordinate is scaled logarithmi-
cally. (left) Relative error of the area and (right) relative error of the perimeter.
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0 4% 10 8 x 101 1.2 x 10°
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Figure 16. Evolution to the equilibrium shape of a red blood cell having y = 0.85 : (left) comparison
between the FEM and the ODE solutions and (right) minimization of the Canham-Helfrich energy.
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Figure 17. Evolution to the equilibrium shape of a red blood cell having y = 0.85 : (left) comparison
between the FEM and the ODE solutions and (right) minimization of the Canham-Helfrich energy.
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Figure 18. Evolution to the equilibrium shape of a red blood cell having y = 0.60 : (left) comparison
between the FEM and the ODE solutions and (right) minimization of the Canham-Helfrich energy.
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Figure 19. Evolution to the equilibrium shape of a red blood cell having y = 0.55 : (left) comparison
between the FEM and the ODE solutions and (right) minimization of the Canham—Helfrich energy.

We solve the finite element problem, and results illustrated in Figure 17(left) show that both forms
are almost the same. The corresponding energy of Canham and Helfrich decreases to a constant
value, and the final energy value is around 6.89.

We consider in the next numerical test a cell with the reduced area y = 0.6. For the same reduced
area, the solution obtained by solving the reduced order problem is obtained using the parameters
N =10*1=-09,p =32 and w'(0) = 0.4. A satisfactory agreement is observed with respect
to the finite element solution in Figure 18(left). Figure 18(right) plots the minimization of the energy
of Canham and Helfrich with respect to the iterations. The energy is decreasing before getting a
stationary constant value around 7.4.

The next numerical test considers a RBC having a reduced area y = 0.55. The solution having
the same reduced area obtained by solving the ordinary differential Equation (A.8) is obtained by
setting N = 10,1 = —0.95, p = 3.3, and w’(0) = 0.48. By comparing with the results of
the finite element solver, we clearly notice the similarities between the two forms, as shown in
Figure 19(left). The evolution of the energy is plotted in Figure 19(right). Observe that the constant
final value is equal to 8.04.

In the final simulation, we provide a numerical validation of the equilibrium shape of a RBC
having a reduced area y = 0.49. We obtain the solution of the reduced order model having the
same shape parameter y by using the following numerical parameters N = 10,1 = 0,p =
3.3, and w’(0) = 0.55. In Figure 20(left), we overlay this solution with the shape obtained by
the finite element computations. The similarity between the two shapes is observed. We show in
Figure 20(right) that the energy of Canham and Helfrich converges to a constant value equal to 9.2.

To summarize, the aforementioned numerical simulations in the two-dimensional case illustrate
the robustness of the finite element solver modeling the static equilibrium of RBCs with the model
introduced by Canham and Helfrich. The validation step is performed by comparing the finite
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Figure 20. Evolution to the equilibrium shape of a red blood cell having y = 0.49 : (left) comparison
between the FEM and the ODE solutions and (right) minimization of the Canham—Helfrich energy.
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Figure 21. Two-dimensional case: overlay of some equilibrium shapes I" of red blood cells with respect to
their reduced areas. A dimensionless representation with a constant perimeter Ap = 27 is considered.
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Figure 22. Convergence properties of the numerical method: evolution of the error, computed in the L2(A)
norm, with respect to the equivalent mesh size s for several values of the reduced area y.

element computations with the results of the reduced order model. Furthermore, we superpose in
Figure 21 some equilibrium shapes of RBCs having different reduced areas y. These shapes are
given by the finite element computations.

Convergence properties of the numerical method. In this paragraph, we investigate numerically
the convergence properties of prescribed finite element solution. The spatial accuracy is studied by
computing the error in the L? norm on successively refined meshes with respect to the reference
solution obtained by solving the reduced order problem. The comparison is performed for three dif-
ferent RBCs having, respectively, the reduced area y € {0.80, 0.85 and 0.95}. Table 22(left) depicts
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Figure 23. 3D axisymmetric case. (left) Red blood cells (RBCs) shapes having i * € {0, 1}: the correspond-
ing values of the energy of Canham and Hefrich are, respectively, [7(2) € {55.48,40.08, 31.24,28.08,
24.65}, from inside to outside. (middle) RBCs shapes having i* = 6: they corresponds respectively to
J(R) € {79.02,83.23,84.5,83.34}, from inside to outside. (right) RBCs shapes having i* = 3: they
corresponds respectively to 7(€2) € {79.77, 80.47,80.59, 96.52}, from inside to outside.

the computed error ||.74; (¢ope) — 7% (¢n) [lo,2,a for successively refined meshes with respect to
spatial resolution given by the equivalent mesh size .y defined in Section 4.2.1. The finite element
solution is called ¢y, whereas gopg represents the solution of the reduced order problem. The error
history is displayed in Figure 22(right); it depicts the convergence properties and, in particular, the
convergence rate of the numerical method. We notice that the error evolution disposes similar con-
vergence rates for the different RBCs. By observing the slope in logarithmic scale, we can suggest
that the error convergence follows O (h1+°‘) where o € (0, 1) represents a real parameter.

4.4. Numerical results in the three-dimensional axisymmetric case

This section is concerned with the numerical investigation of the shapes of RBCs in the three-
dimensional case. We aim to give better insight into the properties of the Canham and Helfrich model
in the three-dimensional case by further exploring our numerical tools, without the aim of providing
a theoretical explanation of the physics underlying. We compute a three-dimensional axisymmetric
solution where we assume both a rotational symmetry around the longitudinal axis and a symmetry
with respect to the equatorial plane. Therefore, the computational domain covers the fourth of the
RBC’s shape, while the entire shape is reconstructed by both plannar and rotational symmetries. The
modelization of the three-dimensional case with the axisymmetry is motivated by the great geometri-
cal simplifications and the computational gain that one gets by doing two-dimensional computations
to model three-dimensional shapes, allowing for an easier understanding of the underlying physics.
We notice that the assembly of the global matrices in the three-dimensional axisymmetric case is
automatically handled within the finite element environment Rheolef. The reduced order model is
briefly described in Appendix B, where we also provide the method used for the numerical approxi-
mation. A more detailed study was made by Wan et al. [70]. Numerical investigations show that we
obtain the usual biconcave shapes of RBCs. Thanks to the simulations, we could bring to light new
forms which are, up to our knowledge, unknown in the existing literature.

We focus on the computational domain that corresponds to one-quarter of the equatorial plane.
We introduce an integer i* that computes the number of point of inflection that corresponds to
the points where the concavity changes its sign. In particular, a biconcave shape possess a value
i* = 1, while a sphere possesses a value i* = 0. We plot in Figure 23 some configurations of
the equilibrium of RBCs corresponding to different values of i* € {0, 1,2, 3}. All the shapes are
dimensionless, and they have a constant surface area equal to 4. Let us consider, for example, the
shapes having i * = 6: the reduced volume has values close to 1 when the shape is becoming closer
to a spherical shape (Figure 23(middle)). We perform a preliminary numerical study using several
values of the reduced volume y. A shape diagram is plotted in Figure 24 where each form of RBCs
is represented by a point that the coordinates represent the reduced volume y and the corresponding
energy J(€2), respectively. Numerical results show that a structure of branches is found, and each
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Figure 24. 3D axisymmetric case. Shape diagram of red blood cells showing the Canham—Helfrich energy
with respect to y.
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Figure 25. 3D axisymmetric case. Overlay of some shapes of red blood cells obtained by the numerical
simulations.

branch seems corresponding to fixed value of i *. Remark that several questions exist with respect to
these energy levels, and we need a further study to understand and explain the diagram’s structure
and, in particular, how the membranes jump between the energy branches. Indeed, we keep varying
the reduced volume y of a RBC initially characterized by a given shape parameter i *. We observe
that a form change occurs when a critical value of y is reached, and a jump to another energy
branch subsequently happens. For a better visual effect, we perform a reconstruction of some three-
dimensional shapes, and we give samples of the obtained forms in Figure 25. The values of i *, y,
and J(£2) characterizing the different RBCs are provided in the table below the shapes. Up to our
knowledge, we do not know if some of these forms have been experimentally observed. However,
we notice that other non-axisymmetric RBCs shapes obviously exist, but they were not investigated
in the present work. An investigation and a stability study of the presented shapes of RBCs will be
separately investigated in a forthcoming paper.
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5. CONCLUSIONS

In this paper, we present a mixed finite element method for the simulation of the equilibrium shapes
of RBCs following the model proposed by Canham and Helfrich. These configurations are charac-
terized by the minimization of the bending energy under the constraints of fixed volume and surface
area. Our derivation is mostly based on a saddle point approach, with a level set method. Our frame-
work allows the use of an anisotropic mesh adaptation technique that helps to better capture the
RBC’s membrane, and it allows more computational accuracy in the vicinity of the cell. Moreover,
our method features the imposition of additional constraints via Lagrange multipliers technique
combined with a posteriori mass corrections. Numerical results show the robustness of this strat-
egy that enforces the mass preservation and improves the convergence properties of the method. We
derive a reduced order model that describes the equilibrium shapes of RBCs in the two-dimensional
case and helps to further validate the finite element computations. We present a number of numerical
examples in the two-dimensional case and the three-dimensional axisymmetric case that illustrate
the main features of the numerical method.

APPENDIX A: REDUCED ORDER MODEL IN THE TWO-DIMENSIONAL CASE

In this appendix, we write a reduced order model that describes the equilibrium state of the red
blood cell (RBC) as the solution of an ordinary differential equation (ODE). We assume that the
cell is symmetric with respect to the horizontal (i.e., x-axis) and the vertical (i.e., z-axis) axes. The
solution of this reduced order model allows to validate the solution of the finite element solver, as
depicted in Figure 6.

Notations. Let us consider a functional f that depends on a function x — ¢(x). We introduce the
notation f'(x) := %(x), and we denote by Dy, f(¢)(¥) the directional derivative of f(¢) at ¢
along the direction .

Mathematical formulation. In the equilibrium state, the RBC is described using a parametric
representation z = h(x) (Figure A.1). We denote by x s the maximum radius of the membrane
such that i(xy) = 0. We introduce the function ¢(x,z) = z — h(x). The membrane is then
described by I' = {x €[0,x7] x[0,+00] : p(x,2) = 0} . An infinitesimal length on I' writes
dl = /1 + (#(x))?dx, while the area V and the perimeter A¢ reads as follows:

A I': z=h(x)

ho

L
-

0 Ty x

Figure A.1. Cartesian notations used in the two-dimensional case.

Vo = —4/ ! w(x)xdx and Ag = 4/ ! V1 + w2(x)dx with w(x) = K (x).
0 0
(A.1)

Thereafter, we write the problem with respect to w. The normal vector n and the mean curvature H
are given by

Vo 1 ( —w(x) ) w'(x)
n(x) = = and H(x,z)=Vmn=—""-+. (A2)
V| V14 w?(x) 1 1 +w2(x)3
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The Lagrangian functional writes

xf

ERLD [V [ - o2+ 0] TF e —2p [ swar. a3)

2

To write the Euler-Lagrange equation, we look for the saddle points of £ (A.3). We assume
that ¥ (x) represents a regular function with a compact support. Therefore, we have the
following derivatives:

w(x)y
VI+wi(x)
*rwy[(H—Ho)*+4] / .

and

D}y [(H = Ho)| )W) =2Hy (w)(H = Ho), D, [VT+w?() [w) @) =

D, L(w: A.p) (§) =4 /0 " Hy () (H = Ho)  TF 02 (9 +2 /0

V1i+w2(x)
(A4)
From the expression of H A.2, we obtain
Hy = ATV SO ey gy = - LR 30O DY
A ST (A5)

We denote respectively by T7, T, and T3 the three terms in the derivative of the Lagrangian (A.4).
We have

T = [ 2(H — Ho) l/fT/JF/Xf ai [ 2(H — Ho) ] wdx+/Xf 6w (x)w'(x)(H — Ho)de‘
0 0 X 0

(I +w(x)?) (I +w(x)?) (I +w(x)?)?
2(H(x) — Hp) 2H’(x)
Because w(xy) = —o00, we have — [W} = m _
4H ) = How(w'(x) Hence, we obtain:
(I + w(x)?)? ' ’ '
(" 2H'(x) *7 2w(x)w'(x)(H(x) — Hy)
A AR Ml e=io e LU
2H'(x) 2w (x)w'(x)(H(x) — Ho) 2w"” (x)
From (A.5) and (A.6), we get 0+ wi?) + 0+ w3y = —(1 n w(x)z)%
dw(x)w?(x) 2w(x)w'(x)Hy w’(x)? 2How'(x)

.Byusing (H(x)—Hp)*+A =

(1+w?i (1 +w()?)? I+ w0 (1 4 wx)?)3

(Hg + A). We simplify the expression of 75

X r / / 2
I :/O 7 |: w(x)w?(x) 4 2How' (x)w(x) N (Hg + 1) w(x)i| sdx. A7)

(1+wx)2)?) (+w)?)? 1+ wx)?)?
By using 77 (A.6) and T3 (A.7), Equation (A.4) reads as follows:

(), Sweow?(x) | (HE + 4w
I+w®)?)3  (+wx?)3 (1 +wx)?)?

Xy
D:U[,(w;l,p)(w):2/0 |:— -2 x:| Ydx.
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Finally, we obtain the Euler-Lagrange equation for the RBC at equilibrium. The reduced order
problem reads as follows:

2w (x) _ Sw(x)w'Z(Q L HE+2) w()f) apx, 0<x<xs
IT+wx)?)?2  (T+wx)?)2  (I+wx)?):? (A8)
w(0) =0 and w’(0) = wy.

Notice that the condition wg > 0 is needed if we expect a biconcave shape. To decrease the deriva-
tion order in (A.8), we consider a variable change k = w/+/1 + w2, and we write the problem
7

(A.8) with respect to k. The boundary condition is x(0) = 0, and we have ¥’ = — =3 and
1+w
K= 2l 3"“”/25. Remark that ’(0) = w’(0). Because both x and w have the same sign,
V1+w? V1+w?
we obtain w = k/+/1 — k2. The mean curvature read H = —«’. We introduce the polynomial
P(§) = (H} + ) § — 2px. The problem(A.8) writes
P PO k) it k@ =0 ad KO =wO. (A9
= ———— in (0, xy), with «(0) = and « = w'(0). .
2(1 - k2) f
Numerical discretization. To solve the problem (A.9), the derivation order is first reduced
by introducing the variables y = (y1,¥2) = (k,k),y0 = (0,w'(0)), and f(y) =
POV =013 ) 4 frstorder ODE is then obtained y/ = £(3) in (0 dy(0) =
Z,W . rst-order is then obtained y’ = f(¥) in (0, x ), and y(0) = yo.
1

We solve the ODE in the interval [0, xs] with x s large enough such that 1 — k?(x) changes
its sign in at a particular value x, and it becomes negative in the interval (x¢,xs). A shoot-
ing method is then needed to obtain the position x ¢. Finally, we compute the RBC’s shape by
w(x) = 0<x<xyg,andh(x) = fxf w(x)dx.

Kk
(1_K2)1/2 ’ X

APPENDIX B: REDUCED ORDER MODEL IN THE THREE-DIMENSIONAL
AXISYMMETRIC CASE

A detailed description of the reduced model in the three-dimensional axisymmetric case is avail-
able in [5, 70]. We only present the numerical method. A parametric representation, that is,
z = h(r) with r € (0,7f), is used to describe the cell membrane, where r is the radial coordi-
nate and Z represents the coordinate perpendicular to the equatorial plane. Analogously, a change
variable k(r) = w(r)/r+/1 + w2(r) allows to describe curvature component coming from the
three-dimensional modelization, whereas the mean curvature reads H(r) = —2«(r) — r«’(r). The
curvature is singular on the longitudinal axis, and a Taylor expansion around r = 0 is then needed.
We introduce a small parameter &, choosen numerically equal to 10~7, and we solve the problem in
[e, 7 r]. The ODE reads as follows:

P _ / 2 3 /
= (Kiuf(i’;%” ~E forrer) k@ =00, ad K =0,

(B.1)

where P(-) is a given polynomial. Regarding the numerical resolution, we introduce y =

T
01.y2)7 = (. k)T and f(y.r) = (yz, F (y‘;;{_‘fgyyzg y? 3&) . Let us consider the initial

data yo = (wg,0) := (w’(0), 0) and the boundary condition at r = ¢ given by y, = (wg, —ewg’).
Finally, the problem reads y’ = f(y,r) for r € (e,ry), and y(¢) = y,. Similarly to the
two-dimensional Cartesian case, we have
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r

forr € (e,ry) and h(r) = / w(r)dr.
rf

rK

V1 =22’

w(r) =
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